

Manual Técnico

ATENÇÃO!

Para evitar risco de choque elétrico ao tocar na caixa do equipamento:

- Não use cabo de alimentação sem o fio de aterramento;
- Não utilize tomadas de força sem o pino de aterramento.

ATENÇÃO!

Ruídos elétricos podem causar instabilidade ao calibrador.

Este calibrador é provido de filtros de interferência eletromagnética que protegem tanto a linha, quanto o próprio equipamento de ruídos. Estes filtros perdem a atuação caso o fio terra não esteja ligado a um ponto de terra efetivo da instalação.

ATENÇÃO!

Altas temperaturas são geradas por meio deste calibrador.

Há riscos de incêndio e explosão podem, caso não sejam adotadas medidas de segurança.

Certifique-se de sinalizar a presença de as altas temperaturas antes, durante e após o uso.

Não coloque o banho térmico sobre superfícies inflamáveis ou materiais que podem sofrer deformação devido a altas temperaturas.

Não obstrua a ventilação para evitar risco de fogo no equipamento.

CUIDADO!

Não aumente o setpoint do forno em passos maiores que 500 °C a fim de prolongar o tempo de vida das resistências de aquecimento.

CUIDADO!

Na utilização do equipamento tanto do ponto de vista da exatidão Metrológica como do ponto de vista da longevidade dos 'HEATERS' é imprescindível a utilização dos isolantes inferior e superior que acompanham o equipamento.

ATENÇÃO!

Antes do uso inicial, após o transporte e sempre que o forno não for ligado por mais do que 10 dias, o instrumento necessita ser ligado por um período de secagem de 1 a 2 horas na temperatura de 600°C.

CUIDADO!

Este equipamento contém componentes de fibra cerâmica. Pessoas que entrarem em contato direto com estes materiais devem tomar as medidas de precauções necessárias para seu manuseio.

ATENÇÃO!

Nunca remova o insert do bloco térmico, nem os termoelementos do insert quando estiverem em temperaturas elevadas. Aguarde até que alcancem à temperatura ambiente. Do contrário, o esfriamento heterogêneo das peças pode provocar travamento mecânico.

As condições de garantia encontram-se disponíveis em nosso site: www.presys.com.br/garantia

Índice

1.0 - Introdução	
1.1 - Especificações Técnicas	2
1.1 .1- Especificações Técnicas da Entrada	3
1.2 - Uso Inicial	3
1.3 - Montagem do insert dentro do forno	
1.4 - Instruções para uso do opcional	4
1.5 - Código de Encomenda	6
1.6 - Acessórios	6
2.0 - Operação do Calibrador TE-1200P	7
2.1 - Menu IN	8
2.1.1 - Ligações de Entrada ou Medição	9
2.2 - Menu CONF	
2.3 - Modo de Operação Manual	
2.4 - Modo de Operação Programável	
2.5 - Modo de Operação Automático	15
3.0 - Recomendações quanto à Acurácia das Medições	17
3.1 - Extraindo a Máxima Acurácia do Banho Térmico	17
4.0 - Instruções de Segurança	18
5.0 - Mensagens de Aviso do Calibrador	18
6.0 - Ajuste dos Parâmetros do PID	18
7.0 - Calibração	19
7.1 - Calibração das Entradas	20
7.2 - Calibração do Probe	21
8.0 - Manutenção	22
8.1 - Instruções para Hardware	22

1.0 - Introdução

TE-1200P

O Calibrador de Temperatura tipo Bloco Seco TE-1200P produz valores de temperatura no bloco de prova ou *insert* de forma a possibilitar a calibração de termopares, termorresistências, termômetros de vidro, termostatos, etc. Além de produzir os valores de temperatura com elevada exatidão, oferece também a possibilidade de medir os sinais gerados por termopares, termorresistências e termostatos, que estão sendo aferidos. Isto é possível por contar de forma incorporada com um calibrador específico para estes sinais incluindo 4 - 20mA. Assim, realiza as funções de banho térmico, de termômetro padrão, de calibrador para sensores tipo RTDs, TCs e ainda mede mA.

- O calibrador TE-1200P gera temperaturas desde 50°C até 1200°C;
- Possui entrada para leitura de termopares, termorresistências, termostatos. Assim, além de gerar a temperatura, mede o sinal do sensor a ser aferido;
- Realiza calibrações totalmente automáticas com ou sem o uso do computador;
- Exatidão de até ± 2,2 °C da temperatura indicada, estabilidade de 0,1°C e resolução de 0,1°C em toda faixa de operação;
- Comunicação com computador e software ISOPLAN;
- Portátil, compacto, dispõe de inserts intercambiáveis.

Possui amplos recursos de programação, incluindo a possibilidade de realizar calibrações automáticas de termopares, termorresistências e termostatos. Para isso, o sensor é inserido no bloco de prova, ou *insert*, e seus terminais elétricos são ligados ao calibrador incorporado. O operador define os pontos de calibração e o número de repetições, depois basta dar início ao processo e toda a seqüência é feita automaticamente.

Outra forma de se fazer calibrações automáticas e documentadas, consiste na aplicação do *software* ISOPLAN em plataforma PC/Windows, usando-se a porta serial para fazer a ligação entre o PC e o banho térmico que se comunicam por meio de RS-232 ou RS-485. Com o *software* ISOPLAN pode-se cadastrar os sensores e instrumentos da fábrica, gerar ordens de serviço, produzir e imprimir certificados e relatórios de calibração, ou seja, todo o poderio da informática é trazido para o ambiente das calibrações.

O calibrador TE-1200P possui ainda inúmeras características, dentre as quais destacamos:

- O calibrador de sinais elétricos é independente da função de banho térmico.
- Sinal sonoro configurável quando atinge a temperatura desejada.
- Teclado numérico que facilita a operação e configuração do calibrador.
- Display de cristal líquido gráfico para apresentação de dígitos grandes.
- Leitura de termoelementos pelas escalas de temperatura ITS-90 ou IPTS-68.
- Fonte interna regulada de 24Vdc para alimentação de transmissores a 2 fios.
- Bateria recarregável e carregador de bateria internos para o calibrador de sinais elétricos.
- Circuito independente para proteção e segurança para alta temperatura.
- Insert a escolher, alça para transporte e pontas de prova inclusas. Se não for especificado o insert, o fornecimento padrão é o BP06.

1.1 - Especificações Técnicas

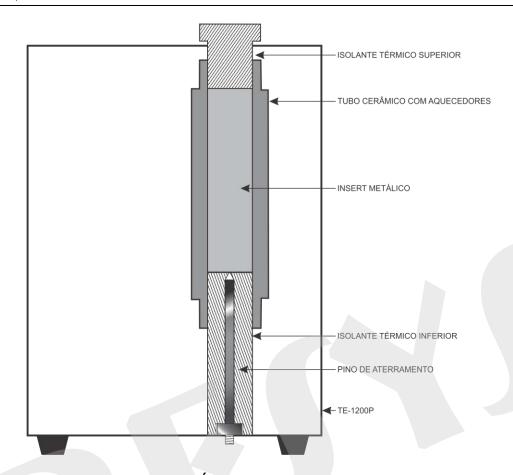
TE-1200P

Faixa de Operação:50 °C a 1200 °CExatidão do display:± 3,8 °CResolução:0,1 °C ou 0,1 °FEstabilidade:± 0,10 °C
Resolução: 0,1 °C ou 0,1 °F
Estabilidade: ± 0,10 °C
Uniformidade Radial ± 0,05 °C @ 50 °C
(homogeneidade):
± 0,25 °C @ 1100 °C
Uniformidade Axial ± 0,10 °C @ 50 °C
(homogeneidade) ± 0,30 °C @ 650 °C
T-1200P (20 mm): ± 0,40 °C @ 1100 °C
Tempo de Aquecimento: 45 minutos (de 100 °C a 1200 °C)
Tempo de Resfriamento: 5h (de 1200 °C a 200 °C)
Potência Elétrica: 2300 W
Diâmetro x Profundidade do Poço: Ø 34 mm por 130 mm de altura
Peso: 10,5 kg
Dimensões (AxLxP): 315 x 180 x 270 mm

1.1 .1- Especificações Técnicas da Entrada

Ranges de entrada	Resolução	Exatidão	Observações
milivolt -150 a 150 mV	0,001 mV	± 0,013 % FS	R _{entrada} > 10M Ω
150 a 2450 mV mA -1 a 24.5 mA	0,01 mV 0,0001 mA	± 0,025 % FS	auto-range
,-	· '	± 0,025 % FS	R _{entrada} < 160 Ω
Resistência 0 a 400 Ω	0,01 Ω	± 0,013% FS	corrente de
400 a 2500 Ω	0,01 Ω	± 0,038% FS	excitação 0,9 mA
Pt-100 -200 a 850 °C / -328 a 1562 °F	0,01 °C / 0,01 °F	± 0,13 °C / ± 0,26 °F	IEC-60751
Pt-1000 -200 a 400 °C / -328 a 752 °F	0,1 °C / 0,1 °F	± 0,2 °C / ± 0,4 °F	IEC-60751
TC-B 50 a -250 °C / 122 a 482 °F	0,1 °C / 0,1 °F	\pm 3,3 °C / \pm 6,6 °F	IEC-60584
250 a 500 °C / 482 a 932 °F	0,1 °C / 0,1 °F	\pm 2,0 °C / \pm 4,0 °F	IEC-60584
500 a 1200 °C / 932 a 2192 °F	0,1 °C / 0,1 °F	± 1,3 °C / ± 2,6 °F	IEC-60584
1200 a 1820 °C / 2192 a 3308 °F	0,1 °C / 0,1 °F	± 1,0 °C / ± 2,0 °F	IEC-60584
TC-J -210 a 1200 °C / -346 a 2192 °F	0,1 °C / 0,1 °F	± 0,3 °C / ± 0,6 °F	IEC-60584
TC-K -270 a -150 °C / -454 a -238 °F	0,1 °C / 0,1 °F	± 0,7 °C / ± 1,4 °F	IEC-60584
-150 a -1370 °C / -238 a 2498 °F	0,1 °C / 0,1 °F	± 0,3 °C / ± 0,6 °F	IEC-60584
TC-N -260 a -200 °C / -436 a -328 °F	0,1 °C / 0,1 °F	± 1,3 °C / ± 2,6 °F	IEC-60584
-200 a -20 °C / -328 a -4 °F	0,1 °C / 0,1 °F	± 0,5 °C / ± 1,0 °F	IEC-60584
-20 a 1300 °C / -4 a 2372 °F	0,1 °C / 0,1 °F	± 0,3 °C / ± 0,6 °F	IEC-60584
TC-R -50 a 300 °C / -58 a -572 °F	0,1 °C / 0,1 °F	± 1,3 °C / ± 2,6 °F	IEC-60584
300 a 1760 °C / 572 a 3200°F	0,1 °C / 0,1 °F	± 1,0 °C / ± 2,0 °F	IEC-60584
TC-S -50 a 300 °C / -58 a -572 °F	0,1 °C / 0,1 °F	± 1,3 °C / ± 2,6 °F	IEC-60584
300 a 1760 °C / 572 a 3200 °F	0,1 °C / 0,1 °F	± 1,0 °C / ± 2,0 °F	IEC-60584

1.2 - Uso Inicial


Identifique se os seguintes componentes estão presentes:

- Forno TE-1200P;
- Insert metálico;
- Isolador inferior do insert (apenas 1 furo central);
- Isolador superior do insert (normalmente mais de 1 furo);
- Cabo de alimentação;
- Manual técnico.

1.3 - Montagem do insert dentro do forno

O núcleo do forno TE-1200P consta de um tubo de cerâmica. Assim por motivo de segurança o insert e os isoladores se encontram em separado. Para se montar o conjunto deve-se primeiro deslizar suavemente o isolador inferior dentro do tubo cerâmico. Não solte o isolador, deslize-o dentro do tubo. Em seguida com o insert metálico seguro pelo extrator de insert abaixe-o dentro do tubo cerâmico.

Resta apenas terminar a montagem colocando-se em cima do insert o isolador superior com vários furos. Observe que o sensor a ser testado deve atravessar o isolador e se aprofundar dentro do insert metálico para se obter uma correta medição de temperatura.

VISTA ESQUEMÁTICA DA MONTAGEM DO INSERT

1.4 - Instruções para uso do opcional

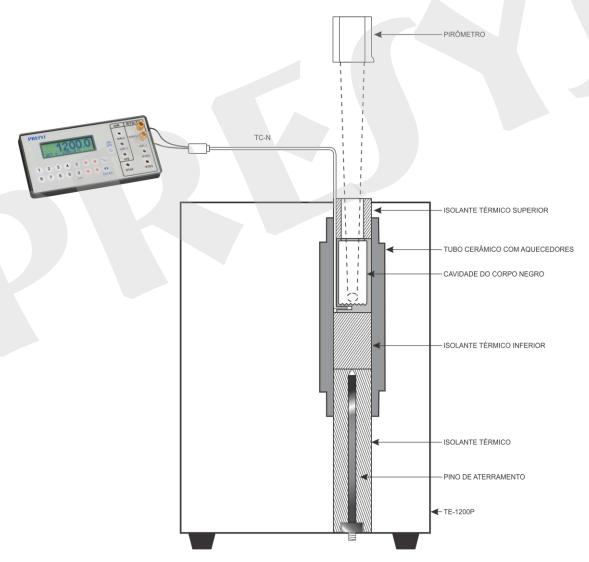
- Insert do corpo negro (Black Body)
 - Identifique o material abaixo e proceda a montagem conforme explicado a seguir:
 - Isolante térmico em formato cilíndrico Montado na parte inferior do poço do forno.
 - Insert metálico tipo cavidade de corpo negro Deve ser introduzido no poço com auxílio de um termopar tipo N montado lateralmente.

Cuidado para quando introduzir a cavidade não permitir que o termopar force a frágil parede de cerâmica do poço.

 Isolante térmico em forma de anel cilíndrico – montado na parte superior do poço do forno.

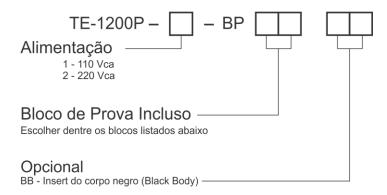
Observe que a posição da fenda do isolante térmico deve coincidir com a bainha do termopar tipo N lateralmente.

• Conecte os terminais do termopar tipo N na entrada auxiliar lateral do calibrador do forno TE-1200P e configure a leitura da entrada IN para termopar tipo N.


O conjunto assim montado se constitui numa excelente cavidade de corpo negro com emissividade acima de 0,95 e alvo efetivo de Ø 20 mm bastante apropriado para calibração de pirômetros óticos.

Alinhe o pirômetro a ser calibrado com a cavidade do corpo negro no forno na posição vertical.

Respeite o distanciamento do pirômetro a ser calibrado em relação ao fundo da cavidade de corpo negro com o tamanho da meta efetiva (Ø 20 mm) conforme especificado no manual técnico do pirômetro ótico.


Lembre-se que a área focalizada pelo pirômetro a ser calibrado deve ser menor ou igual ao tamanho da meta efetiva do corpo negro para não se introduzir erros de medição.

Use o certificado de calibração do termopar tipo N para corrigir as leituras da entrada IN do calibrador e comparar a leitura do pirômetro óptico.

VISTA ESQUEMÁTICA DA MONTAGEM DA CAVIDADE DE CORPO NEGRO

1.5 - Código de Encomenda

1.6 - Acessórios

• Blocos de Prova (insert):

Descrição	Orifícios	Código de Encomenda do TE-1200P
BP01	1 x 3/4"	06.04.0031-00
BP02	1 x 1/2"	06.04.0032-00
BP03	1 x 6,0mm e 3 x 1/4"	06.04.0033-00
BP04	3 x 6,0mm e 1 x 1/4"	06.04.0034-00
BP05	4 x 6,0mm	06.04.0035-00
BP06	2 x 6,0mm e 2 x 1/4"	06.04.0036-00
BP07	1 x 6,0mm, 1 x 8,0mm e 1 x 3/8"	06.04.0037-00
BP08	1 x 6,0mm, 1 x 3,0mm e 2 x 1/4"	06.04.0038-00
BP09	Sem orifício, a ser usinado pelo cliente.	06.04.0039-00
BP10	Outros, sob encomenda.	06.04.0040-00

Obs.: Quando pedido, o certificado de calibração será fornecido para o primeiro *insert* solicitado.

Insert do corpo negro (Black Body)

Código de Encomenda: BB - 06.04.0074-00 - *Black Body* Insert tipo caneca de geometria especial e alvo efetivo de \varnothing 20 mm feito em material refratário. Constitui-se numa cavidade de corpo negro com alta emissividade para calibração de pirômetros óticos.

Interfaces de Comunicação:

Descrição	Código de Encomenda.
RS-232 - Conector DB-9F (COM1)	06.02.0002 - 00
RS-232 - Conector DB-25F (COM2)	06.02.0004 - 00
RS-485	06.02.0006 - 00

Software ISOPLAN.

• Certificado de Calibração.

2.0 - Operação do Calibrador TE-1200P

O calibrador TE-1200P mantém controlada a temperatura do bloco térmico e permite a leitura do termoelemento conectado aos seus bornes. Pode-se acompanhar a indicação de termopares, termorresistências, transmissores de temperatura, etc., em conjunto com o valor da temperatura do bloco térmico e do setpoint de temperatura.

O calibrador possui 3 modos de operação:

- Modo Manual para seleção da temperatura do bloco térmico diretamente pelo teclado numérico.
- Modo Programável: 6 programas distintos com 11 valores de setpoints de temperatura. A temperatura do bloco térmico é selecionada entre os valores programados pelas teclas û e ♣. O Modo Programável Temporizado faz a varredura automática dos setpoints de temperatura.
- Modo Automático para calibração de termoelementos. A calibração do termoelemento
 é realizada de forma automática pelo calibrador: o planejamento e o resultado da
 calibração, além das leituras do termoelemento são armazenados na memória do
 calibrador.

O menu abaixo é mostrado ao ligar o calibrador TE-1200P pela tecla **ON/OFF**. O setpoint de temperatura inicial é 50,0 °C:

Através das teclas ①, ♣, ⇐ e ⇒, escolha as opções do menu e tecle ENTER.

IN: seleção do sinal de entrada do calibrador. Escolha entre mV, Ohms, termopares, termorresistências, mA, contato seco ou nenhuma. Maiores detalhes no item 2.1 - Menu IN.

EXEC: O calibrador entra no modo de operação manual ou programável.

CONF: Acessa as opções de configuração do calibrador. Maiores detalhes no item 2.2 - Menu CONF.

CAL: Esta opção acessa as funções de ajuste do calibrador, protegida por senha. Maiores detalhes na seção 7 - Calibração.

COM: Acessa os comandos para calibração automática. É possível realizar a calibração sem uso de computador ou com o seu uso (via software ISOPLAN). Maiores detalhes no item 2.5 - Modo de Operação Automático.

2.1 - Menu IN

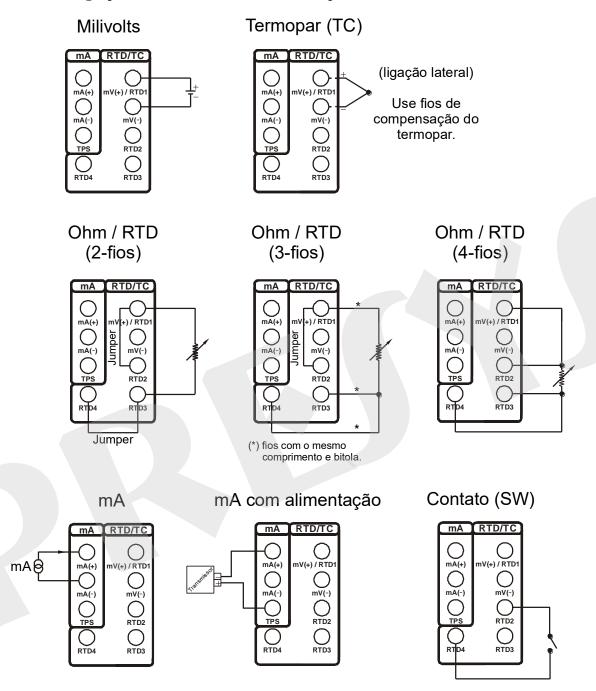
⇒ mV	OHM		TC
RTD	mA	SW	NO

mV, **mA**, **SW**: seleciona a leitura dos sinais elétricos de milivolt, miliampere ou contato seco, respectivamente.

OHM: seleciona entrada em ohms. O menu de escolha da leitura a 2, 3 ou 4 fios é apresentado a seguir.

⇒ 2-WIRE	3-WIRE
4-WIRE	

TC: seleciona o termopar utilizado. Escolha entre os tipos **B**, **J**, **K**, **N**, **R** e **S**. No menu seguinte, é escolhido o tipo de compensação de junta fria: interna ou manual.


Ao escolher a compensação interna, o valor da temperatura da junta fria é lida e indicada pelo calibrador. Se a opção **MANUAL** for selecionada, o valor da junta fria deve ser fornecido pelo operador. Ao confirmar o valor com a tecla **ENTER**, o calibrador retorna à operação.

RTD: Seleciona o tipo de termorresistência utilizada. Escolha entre os tipos PT100 e PT1000. Escolha também entre a leitura a 2, 3 ou 4 fios.

NO: Desabilita a leitura de qualquer sinal externo.

Selecionando qualquer uma das opções acima, o calibrador retorna ao modo de operação manual, sem a necessidade de selecionar a opção **EXEC**.

2.1.1 - Ligações de Entrada ou Medição

2.2 - Menu CONF

⇒ CF	PRG	ME	M	LCD	
SC	BT	DT	BZ	TU	

CF: Seleciona a unidade de temperatura entre °C ou °F. As escalas de temperatura ITS-90 ou IPTS-68 são selecionadas tanto para leitura do termoelemento como também para medição da referência interna do bloco térmico.

⇔ oC-80	⁰F-90	
°C-68	⁰F-68	

LCD: Esta opção permite a mudança de contraste do display gráfico de cristal líquido. Utilize as teclas ☆ e ♣ até conseguir a melhor visualização do display e termine a operação com a tecla **ENTER**.

BT: Indica o valor da tensão da bateria ou do carregador de bateria, conforme a fonte de alimentação do banho térmico esteja desligada ou ligada, respectivamente.

Nível da bateria	Estado da bateria	Display
4,0 a 7,0V	normal	
< 4,0V	fraca	LOW BATTERY

DT: Atualiza a data e a hora do calibrador. Desta forma, quando o calibrador realiza uma calibração no modo automático via ISOPLAN são registrados os dados de calibração conjuntamente com a data e hora de sua ocorrência. Toda vez que o calibrador for desligado, o relógio interno deixa de ser atualizado. O software ISOPLAN pode atualizar automaticamente a data e hora do calibrador pelo relógio do computador. Ou, se preferir, utilize as teclas ☆ e ❖ para alterar o campo que pisca e as teclas ➡ e ⇐ para passar para outro campo. A tecla **ENTER** confirma a última seleção.

BZ: Menu de configuração da buzina piezoelétrica.

⇒ NO	YES	ENDCAL

NO: Desabilita o funcionamento da buzina.

YES: Um sinal sonoro é emitido quando a temperatura do bloco térmico se aproxima do setpoint.

ENDCAL: Um sinal sonoro é emitido ao final de uma calibração no modo de operação automático.

TU: Menu de configuração dos parâmetros de controle PID da parte de aquecimento (heating). Maiores detalhes na seção 6 - Ajuste dos Parâmetros do PID.

K: Ganho proporcional.

I: Ganho integral.

D: Ganho derivativo.

FACT: Restaura os parâmetros de controle para os valores de fábrica.

PRG: Menu de programação do calibrador.

⇒ DEC_IN	DEC_PRB	
SETPOINT		

DEC_IN: Seleção do número de casas decimais da leitura do termoelemento. O número default depende do sinal de entrada.

DEC_PRB: Número de casas decimais da temperatura do bloco térmico e do valor do setpoint. O número default é 1.

SETPOINT: Habilita o *Modo Programável* de operação do calibrador, além de permitir a configuração dos valores programados. O programa atual é indicado pela seta de seleção. Escolha entre os **6** programas de temperatura ou **NO** para desabilitar o *Modo Programável*.

Selecione qualquer um dos 6 programas e confirme com a tecla **ENTER.** A seguir, é mostrado o menu de configuração dos setpoints de temperatura do programa.

⇒ 10%	20%	25%
VARIABLE		

Altere a configuração para passos (STEPS) de 10%, 20%, 25%, VARIABLE ou tecle C/CE para manter a configuração já armazenada na memória. A faixa de temperatura do programa deve ser configurada através dos valores em SETPOINT HIGH e SETPOINT LOW no caso de passos fixos de 10%, 20% ou 25% da faixa. A opção VARIABLE permite que o usuário defina de 2 a 11 valores quaisquer de setpoint de temperatura, não necessariamente em ordem ascendente.

A consulta dos valores dos passos de um programa deve ser realizada pela opção VARIABLE, confirmando-se os valores mostrados no display com a tecla ENTER. As opções 10%, 20% e 25% alteram automaticamente o número de passos e recalculam seus valores através de SETPOINT HIGH e SETPOINT LOW.

SC: Esta função realiza o escalonamento das leituras do termoelemento. O escalonamento é muito útil na calibração de transmissores de temperatura, por exemplo, pois facilita a visualização da temperatura atual e a leitura do transmissor na mesma escala. O erro pode ser verificado diretamente em °C ou °F. Selecione a opção **SC** e tecle **ENTER**, caso nenhuma entrada esteja selecionada na opção **IN**, o calibrador mostrará a mensagem **SELECT INPUT FIRST**. Retorne ao menu **IN** e selecione o tipo de sinal de entrada.

A função **SC** mostrará **YES** ou **NO**. Confirme **YES** para configurar o escalonamento ou **NO** para desabilitar a função **SC**, com a tecla **ENTER**.

O escalonamento é realizado através dos parâmetros: **INPUT HIGH** e **INPUT LOW** correspondendo aos valores máximo e mínimo do sinal de entrada do calibrador de sinais elétricos, na unidade de engenharia deste sinal. A seguir, configuram-se os parâmetros **SCALE DEC (0-4)**, **SCALE HIGH** e **SCALE LOW** de acordo com os valores máximo e mínimo da escala do transmissor e o número de casas decimais desejado. O valor escalonado aparece no display com a unidade #.

Por exemplo, transmissor de temperatura com entrada de 0 a 100°C e saída de 4 a 20mA. O escalonamento com 1 casa decimal seria:

INPUT HIGH: 20.0000 mA INPUT LOW: 4.0000 mA SCALE DEC (0-4): 1 SCALE HIGH: 100.0 # SCALE LOW: 0.0 #

MEM: O calibrador TE-1200P admite diversas programações e funções especiais, que podem tornar-se de uso freqüente. Nestas situações, é útil armazenar na memória tais configurações, com o objetivo de economizar tempo. Até 8 seqüências de operação podem ser gravadas na memória.

Selecionando a opção **MEM**, é possível gravar a configuração atual (**WRITE**), recuperar uma configuração armazenada (**RECALL**) ou limpar todas as posições da memória (**CLEAR ALL**).

⇒ WRITE RECALL
CLEARALL

Selecionando a opção WRITE ou RECALL será apresentado um novo menu com os números de 1 a 8, representando cada uma das posições da memória. Escolha uma das posições e tecle ENTER. A operação de escrita (WRITE) pode ser realizada sobre uma posição de memória já utilizada. O calibrador pede a confirmação da superposição com a mensagem OVERWRITE MEMORY?. A operação CLEAR ALL mostra a mensagem ARE YOU SURE? para confirmar. Em ambos os casos, tecle ENTER para confirmar a operação ou C/CE para cancelar.

2.3 - Modo de Operação Manual

O display indica o valor da temperatura selecionada do bloco térmico, além do valor de temperatura atual do bloco térmico ou do termoelemento.

Há 4 maneiras de visualização no display, envolvendo o valor da entrada do calibrador (**IN**), a temperatura do bloco térmico (**PROB**) e do setpoint de temperatura (**SET**). A tecla ← alterna a forma de apresentação do display:

IN = 23.456 mV PROB= 300.0 °C

PROB= 300.1 °C SET = 300.0 °C

23.456 IN = Voltage (mV)

300.1 SET = 300.0 °C

O setpoint de temperatura do bloco térmico é selecionado diretamente pelo teclado numérico, mesmo se a indicação **SET** não estiver aparecendo. O teclado numérico ativa a seleção de **SET**, em qualquer uma das formas de apresentação do display, para alteração de setpoint.

O valor do setpoint é incrementado pela tecla û e decrementado pela tecla ↓. Enquanto as teclas são mantidas pressionadas, o setpoint continua sendo incrementado ou decrementado.

A tecla ⇒ não possui função no modo de operação manual do calibrador TE-1200P.

O forno TE-1200P modifica o valor de setpoint selecionado pelo usuário sempre na forma de uma rampa com inclinação limitada. Isto garante um aquecimento mais homogêneo e seguro do cilindro de cerâmica interno. Além disso, os parâmetros de PID do forno foram otimizados e agregados parâmetros de corte de overshoot. Tudo isto, garante tempo de estabilização mínimo e com mínimo overshoot possível.

2.4 - Modo de Operação Programável

Os programas personalizados podem ser carregados da memória do calibrador, ativando o modo de operação programável. Os valores programados de temperatura do bloco térmico são utilizados diretamente, sem digitação.

O display indica **STEPn** ao lado do valor de setpoint de temperatura do bloco térmico na operação programável. O número do programa é indicado por **n**. Utilizandose as teclas ☆ e ♣, é feita a mudança de setpoint de temperatura entre os valores programados. O teclado numérico continua disponível para seleção manual da temperatura do bloco térmico, da mesma forma que no modo de operação manual.

A varredura temporizada das temperaturas programadas pode ser implementada, definindo-se o tempo de estabilização do termoelemento no bloco térmico.

A tecla ⇒ habilita a varredura temporizada dos pontos. Quando pressionada, a mensagem **STEPn** dá lugar a **0s** e o calibrador aguarda a configuração do tempo de estabilização de 1 a 9 minutos, pelas teclas de **1** a **9**. A varredura temporizada é desabilitada pressionando-se novamente a tecla ⇒.

A contagem regressiva do tempo de estabilização, somente é iniciada quando a temperatura do bloco térmico atinge um valor bem próximo da temperatura programada (\pm 0,20 °C). Neste instante um sinal sonoro é emitido, caso a buzina esteja configurada para **YES**.

2.5 - Modo de Operação Automático

A calibração do termoelemento é realizada de forma automática pelo calibrador TE-1200P. A configuração, assim como a verificação da calibração, são realizadas no próprio calibrador. Também é possível utilizar o software ISOPLAN e suas ordens de serviço, nos moldes de CAC - Calibração Assistida por Computador.

A calibração automática independente, sem o uso do ISOPLAN, é planejada na opção **TAGMAN** do menu **COM**.

TAG	EXEC	VERIF
ADDRESS		⇒ TAGMAN

Antes de iniciar sua programação porém, configure o sinal que será lido pelo calibrador no menu **IN**. Para a calibração de termômetros de vidro, por exemplo, não existe sinal elétrico a ser lido. Neste caso, a opção **IN** do menu deve estar configurada para **NO** e o calibrador pedirá a digitação do valor indicado pelo termômetro, ao final do tempo de estabilização de cada ponto de calibração.

Os dados de uma calibração automática envolvem:

- TAG: a identificação do tag do termoelemento.
- SP: os valores de referência de temperatura do bloco térmico para calibração (pontos de calibração).
- TOL: a tolerância máxima para a operação do termoelemento.
- STB: o tempo de estabilização, em segundos, para correta indicação da temperatura do termoelemento, contado partir do instante que o bloco térmico atinge e se estabiliza na temperatura do setpoint.
- STR: a estratégia de calibração dos valores de referência programados. As estratégias disponíveis são: ① (SOBE), ①(DESCE), ①① (SOBE DESCE), ②① (DESCE SOBE), ①①① (SOBE DESCE SOBE) e ②②② (DESCE SOBE DESCE).
- RP: o número de repetições da estratégia.
- **RGI**: a faixa de indicação do termoelemento.
- RGO: a faixa de temperatura de operação correspondente à faixa de indicação acima.

A calibração automática tem início ao selecionar a opção **EXEC** do menu **COM**. Todas as operações são realizadas automaticamente pelo calibrador TE-1200P. O teclado fica bloqueado até o final da calibração.

Ao final do tempo de estabilização, o calibrador armazena a leitura do termoelemento na memória e passa ao ponto seguinte, caso algum sinal de entrada tenha sido previamente configurado no menu **IN** e os terminais ligados à borneira do calibrador de sinais elétricos.

A mensagem **CALIBRATION END** aparece no display ao final da calibração automática. Tecle **ENTER** para confirmar. Os resultados podem ser verificados na opção **VERIF** do menu **COM**.

A primeira mensagem da opção **VERIF** informa o resultado da calibração, com o número de pontos aprovados ou não. A seguir, aperte **ENTER** para verificar cada uma das leituras realizadas pelo calibrador. As teclas ⇒ e ⇔ alternam entre 2 telas: uma com a indicação dos valores de temperatura e indicação do termoelemento e outra com mensagem indicando o número do ponto de calibração e o resultado (**OK** ou **FAIL**), além do valor do erro em %.

A opção **TAG** do menu **COM** possui uma lista de até 4 tags reservados para download e upload com o software ISOPLAN. A tecla **ENTER** seleciona o tag a ser calibrado, dentre todos os tags da lista. O início da calibração automática faz-se pela opção **EXEC** do menu **COM** e a verificação dos dados da calibração na opção **VERIF**. Para calibração automática independente do ISOPLAN, existe um tag manual reservado. A seleção do tag manual é feita na confirmação da opção **TAGMAN** com a tecla **ENTER**.

A opção **ADDRESS** seleciona o endereço de comunicação do calibrador TE-1200P. O protocolo de comunicação utilizado é o ModBus - RTU, sem paridade e baud rate de 9600. A comunicação do calibrador diretamente com o computador pode utilizar RS-232 ou RS-485, para opção em rede, conforme a interface de comunicação utilizada. Para comunicação com o *software* ISOPLAN configure **ADDRESS** com o valor 1.

3.0 - Recomendações quanto à Acurácia das Medições

O calibrador de temperatura tipo bloco seco da **PREJYJ** TE-1200P é um instrumento de elevado nível de exatidão, exigindo que se observe os procedimentos descritos nesta seção, de forma a assegurar as condições necessárias para a obtenção dos níveis de acurácia durante as calibrações.

- Atenção especial deve ser tomada quanto à limpeza dos inserts. Sempre que necessário, deve-se lavá-los com água e sabão, enxaguar-se bem e secar. Óleo, graxa, partículas sólidas podem prejudicar a transferência de calor ao insert.
- O sensor a ser calibrado deve penetrar no furo apropriado do insert. Caso haja muita folga, pode-se perder todo o sentido da acurácia da medição. O conceito de folga entre o sensor e o furo correspondente deve ser entendido de forma subjetiva, onde o uso do bom senso é muito importante. Assim, o sensor deve penetrar no furo do insert (ambos perfeitamente limpos) de forma a ficar justo. Após colocado não deve se movimentar ou balançar, porém não deve entrar forçado o que pode provocar emperramento.

3.1 - Extraindo a Máxima Acurácia do Banho Térmico

O controle da temperatura é baseado na medição de temperatura de um sensor interno solidário ao tubo cerâmico de alta condutibilidade térmica.

Este sensor de controle é calibrado (ajustado) na fábrica através de um outro sensor de altíssima acurácia (probe) conectado a um supertermômetro, conforme descrito no item 7.2 - Calibração do Probe. Na fábrica é feita uma transferência de acurácia do supertermômetro para a indicação do calibrador do bloco térmico. Esta transferência só é bem realizada quando existe uma perfeita equalização de temperatura (equilíbrio termostático) do sensor interno de controle com o probe do supertermômetro. O sensor interno e o probe devem estar localizados na mesma profundidade.

O usuário conseguirá extrair a máxima acurácia do banho térmico, fornecida no manual técnico, caso consiga reproduzir as mesmas condições de calibração da fábrica, isto é, mesmo *insert* utilizado na fábrica, pequenas folgas, mesma profundidade etc.

A conclusão importante para se obter a máxima acurácia com um calibrador de temperatura tipo bloco seco é reproduzir o processo que a fábrica utilizou para se calibrar o próprio banho térmico.

Quando houver necessidade de exatidão superior à fornecida no manual técnico, pode-se lançar mão de um supertermômetro externo como referência ou padrão para comparação com o termoelemento a ser calibrado.

Neste caso o banho térmico só é utilizado como gerador de calor, não como padrão de temperatura. Como ele possui uma estabilidade muito superior à sua acurácia, o usuário pode utilizar este fato para que com um *insert* de dois furos, confronte a temperatura do supertermômetro com a de seu termoelemento a ser calibrado.

4.0 - Instruções de Segurança

- Não deixe o local onde o calibrador estiver ligado sem identificação e avisos.
- Antes de desligar o calibrador, retorne a temperatura do bloco térmico para valores próximos da temperatura ambiente.
- Nunca remova o insert do bloco térmico, nem os termoelementos do insert, quando estiverem em temperaturas elevadas. Aguarde até que cheguem à temperatura ambiente.
- Nunca transporte o forno com o insert metálico dentro do forno, pois o insert metálico pode bater no tubo cerâmico e danificá-lo permanentemente.

5.0 - Mensagens de Aviso do Calibrador

Aviso	Significado	Procedimento
RAM ERROR READ MANUAL	Memória RAM com problema	Desligar e ligar o calibrador, se o erro persistir, enviar o instrumento para fábrica
EEPROM ERROR READ MANUAL	Memória EEPROM com problema	Idem ao anterior
LOW BATTERY	Nível da tensão da bateria baixo	Verificar a alimentação do banho térmico TE-1200P
UNDER / OVER	Sinal de entrada fora das especificações ou da faixa de escalonamento	Consultar o item 1.11 de Especificações de Entrada
????.??°C	Sensor de entrada aberto	Verificar as ligações de entrada do sensor

6.0 - Ajuste dos Parâmetros do PID

O calibrador de temperatura TE-1200P possui algoritmo de controle PID para calcular a saída de controle do bloco térmico.

As características de estabilidade e tempo de resposta do banho térmico estão fortemente relacionadas aos parâmetros do PID, explicados a seguir:

O parâmetro K (ganho proporcional) amplifica o sinal do erro entre o setpoint e a temperatura do bloco térmico para estabelecer o sinal de saída.

Quando este parâmetro está muito grande, a reação da saída a mudanças nas condições externas é muito rápida, no entanto isto pode levar o sistema a oscilar. Abaixando-se muito este parâmetro pode fazer com que o banho não reaja rapidamente a variações externas, dando impressão de momentânea perda de controle.

O parâmetro I (ganho integral) é responsável pela ação integral e é a parte mais importante para o controle no setpoint. Enquanto houver erro entre o setpoint e a

temperatura do bloco térmico, a ação integral atua no sinal de saída até levar o erro a zero.

O parâmetro D (ganho derivativo) é responsável pela ação derivativa que fornece uma resposta rápida na saída de controle em virtude de uma variação rápida na temperatura do bloco térmico. É utilizado para eliminar oscilações. No entanto, pode ocasionar efeito inverso, isto é, causar oscilações quando há muito ruído presente no sistema.

O calibrador de temperatura é sintonizado na fábrica com o ajuste ótimo dos parâmetros. Caso se queira privilegiar alguma das características de performance (tempo de estabilização ou tempo de resposta) pode-se alterar com critério estes parâmetros.

7.0 - Calibração

Advertência: Somente entre nas opções a seguir, após sua perfeita compreensão. Caso contrário, poderá ser necessário retornar o instrumento à fábrica para recalibração!

Selecione a opção **CAL** no menu principal e pressione **ENTER**. Deve-se então, introduzir a senha (**PASSWORD**) 9875 de acesso ao menu de calibração.

A senha funciona como uma proteção às faixas de calibração. Uma vez satisfeita a senha, o menu exibe as opções:

Escolha então, a faixa de entrada (IN), pois a faixa de saída (OUT) não está disponível para o usuário. DATE é a opção que permite registrar a data em que se realizou a calibração e uma vez preenchida, aparecerá toda vez que o instrumento for religado.

As opções de calibração de IN são:

⇒ mV	mA	OHM	CJC
PROBE			

7.1 - Calibração das Entradas

Selecione o mnemônico correspondente e injete os sinais mostrados nas tabelas abaixo.

Na calibração das entradas, o display exibe na 2ª linha o valor medido pelo calibrador e na 1ª linha o mesmo valor expresso em porcentagem.

Observe que os sinais injetados precisam apenas estar próximos dos valores da tabela.

Uma vez injetado o sinal, armazene os valores do 1º e 2º ponto de calibração, através das teclas 1 (1º ponto) e 2 (2º ponto).

Entrada mV	1º ponto	2º ponto
G4	0,000 mV	70,000 mV
G3	0,000 mV	120,000 mV
G2	0,000 mV	600,000 mV
G1	600,000 mV	2400,000 mV

Entrada mA	1º ponto	2º ponto
Faixa única	0,0000 mA	20,0000 mA

A calibração da entrada, em Ω , é feita em duas etapas:

a) Aplicação de sinal de mV:

Na calibração abaixo, deixe os bornes RTD3 (+) e RTD4 (+) curto-circuitados.

Sinal de mV	Bornes	1º ponto	2º ponto
V_OHM3	RTD3(+) e mV(-)	90,000 mV	120,000 mV
V_OHM4	RTD4(+) e mV(-)	90,000 mV	120,000 mV

b) Aplicação de resistores padrões:

Conecte uma década ou resistores padrões aos bornes RTD1, RTD2, RTD3 e RTD4 (ligação a quatro fios).

Resistores	1º ponto	2º ponto
OHM3	20,000 Ω	$50,000~\Omega$
OHM2	100,000 Ω	$500,000~\Omega$
OHM1	500,000 Ω	2200,000 Ω

A calibração da junta fria (CJC) é feita medindo-se a temperatura do borne mV(-). Armazene apenas o 1º ponto.

Junta Fria	1º ponto
CJC	32,03 °C

7.2 - Calibração do Probe

As opções de calibração / probe são:

°C: Ajuste do sensor de temperatura interno (Probe interno).

RESTORE: Restaura os parâmetros de calibração do sensor de temperatura interno para os valores de fábrica.

Para reajustar o Probe interno é necessário fazer uma comparação entre o valor indicado pelo calibrador (Probe) e o valor de temperatura de um outro probe externo de altíssima acurácia medido num supertermômetro (ST) e introduzido no *insert* do bloco térmico.

A opção para ajuste do sensor interno possui sete pontos de correção da temperatura. Estes pontos são armazenados via teclas 1 a 7.

Antes de iniciar a calibração (ajuste) armazene nestes pontos seus respectivos valores iniciais de armazenamento, conforme tabela abaixo.

Vá para o modo de operação manual (menu **EXEC**) e faça um ensaio nos sete níveis de temperatura (setpoints da tabela), anotando o valor indicado pelo supertermômetro (ST). Volte para a opção Calibração / Probe / °C e agora armazene os valores indicados pelo supertermômetro.

Observe que apesar da temperatura do Probe se estabilizar rapidamente no setpoint selecionado a temperatura real do insert pode levar bem mais tempo. Este fato deve ser levado em consideração em tempo de calibração do banho.

Setpoint da temperatura gerada	Valor inicial de armazenamento	Indicação do ST	Novo valor de armazenamento	Nova indicação do ST	Tecla
150	150,0	149,96	150,0	150,01	tecla 1
350	350,0	349,93	349,9	349,99	tecla 2
600	600,0	598,03	598,0	600,02	tecla 3
750	750,0	745,32	745,3	749,99	tecla 4
850	850,0	843,13	843,1	850,03	tecla 5
1000	1000,0	990,45	990,4	999,97	tecla 6
1100	1100,0	1087,11	1087,1	1100,05	tecla 7

8.0 - Manutenção

8.1 - Instruções para Hardware

Não há peças ou componentes no calibrador de temperatura TE-1200P que possam ser reparados pelo usuário. Apenas os dois fusíveis de alimentação de 10A para TE-1200P 220 Vca, colocados juntos com a tomada de força podem ser substituídos pelo usuário.

O rompimento do fusível pode ser devido a um surto de potência da rede ou a falha de um componente do calibrador. Substitua o fusível uma vez. Caso um segundo fusível venha a romper é porque foi causado por algum componente interno do calibrador. Retorne o calibrador à fábrica para reparos.

