PRESS Instrumentos e Sistemas

Super Termômetro ST-501

MANUAL TÉCNICO

Índice

1 - Introdução	
1.1 - Fenecificações Técnicas	2
1.1.1 - Especificações Técnicas da Entrada	3
1.1.2 - Especificações Técnicas da Comunicação Serial	5
1.2 - Código de Encomenda	6
1.3 - Acessórios	6
1.4 - Recedited : 1.5 - Uso do Suporte	7
1.5 - Uso do Suporte	8
2 - Operação do Super Termômetro ST-501	9
2.1 - Ligações de Entrada ou Medição	10
2.2 - Modo de Operação	
2.3 - Menu CONF	
2.4 - Configuração do Probe de Termorresistência	
2.4.1 - Coeficientes ITS-90	
2.4.2 - Coeficientes CVD e CCVD	21
2.5 - Configuração do Probe de Termopar	22
3.0 - Mensagens de Aviso do Super Termômetro	26

4.0 - Calibração	
4.1 - Calibração das Entradas	 27
5.0 - Protocolo MODBUS da Comunicação Serial	 30
5.1 - Modos de Transmissão	
5.2 - Detecção de Erro	31
5.3 - Formato da Mensagem	31
5.4 - Descrição das Funções	 33
5.5 - Relação dos Registros Utilizados	 39
5.6 - Cálculo do Campo Verificação de Erro	45
1	

1 - Introdução

O Super Termômetro ST-501 tem como finalidade básica a medição de temperatura com elevada exatidão. Utiliza termorresistência de platina como sensor de temperatura e também aceita sinais de termopares. O indicador eletrônico digital pode ser fornecido conjuntamente com o sensor de temperatura e certificado de calibração do conjunto. O ST-501 calcula temperaturas baseadas em tabelas internacionais padronizadas, nas escalas IPTS-68 e ITS-90, e também possui algoritmos internos para calcular temperatura utilizando-se coeficientes Callendar-Van Dusen e coeficientes ITS-90 provenientes de uma calibração de um sensor. Caso o cliente já possua um ou vários sensores tipo termorresistência de platina/termopares nobres, com as características necessárias para serem utilizados como padrões, basta que sejam introduzidos seus respectivos coeficientes. Para probes não calibrados, pode-se utilizar as curvas de linearização padrões para termorresistências e termopares.

- Termômetro padrão, resolução de 0,001°C.
- Substitui os termômetros padrões de vidro.
- Totalmente eletrônico, sem partes móveis.
- Utiliza termorresistência de platina ou termopar como sensor de temperatura.
- Portátil e compacto, fornecido com bateria recarregável, carregador de bateria, estojo para transporte e conjunto de 4 pinos banana (2 vermelhos e 2 pretos) para serem soldados diretamente nos terminais do sensor.
- Fornecido com suporte para melhor visualização do display em bancada.
- Possui memória interna e comunicação serial com o computador.
- Aceita coeficientes Callendar-Van Dusen, IPTS-68 e ITS-90.

1.1 - Especificações Técnicas

Especificações do ST-501:

Dimensões: 56mm x 144mm x 72mm (altura x largura x profundidade)

Peso: 0,53kg

Tempo de warm-up: 5 minutos

Bateria recarregável com duração de 30 horas

Temperatura de operação: 0 a 50°C

Umidade relativa: 0 a 90%

Garantia: 1 ano, exceto para bateria recarregável.

Acompanha bateria recarregável, carregador de bateria, suporte e estojo para transporte

1.1.1 - Especificações Técnicas da Entrada

	Ranges	Resolução	Exatidão	Observações
Resistência	0 a 100 Ω	0,0001 Ω	± 0,001 Ω	corrente de
	100 a 500 Ω	0,001 Ω	$\pm 0,004 \Omega$	excitação 1,0 mA
Pt-100	-200 a 850 °C / -328 a 1562 °F	0,001 °C / 0,001 °F	± 0,01 °C / ± 0,02 °F	corrente de
				excitação 1,0 mA
Pt-25	-200 a 850 °C / -328 a 1562 °F	0,001 °C / 0,001 °F	± 0,01 °C / ± 0,02 °F	corrente de
				excitação 1,0 mA
TC-J	-210 a 1200 °C / -346 a 2192 °F	0,01 °C / 0,01 °F	± 0,10 °C / ± 0,20 °F	IEC-60584
TC-K	-270 a -150 °C / -454 a -238 °F	0,01 °C / 0,01 °F	± 0,25 °C / ± 0,50 °F	IEC-60584
	-150 a 1370 °C / -238 a 2498 °F	0,01 °C / 0,01 °F	± 0,10 °C / ± 0,20 °F	IEC-60584
TC-T	-260 a -200 °C / -436 a -328 °F	0,01 °C / 0,01 °F	± 0,30 °C / ± 0,60 °F	IEC-60584
	-200 a -75 °C / -328 a -103 °F	0,01 °C / 0,01 °F	± 0,20 °C / ± 0,40 °F	IEC-60584
	-75 a 400 °C / -103 a 752 °F	0,01 °C / 0,01 °F	± 0,10 °C / ± 0,20 °F	IEC-60584
TC-B	50 a 250 °C / 122 a 482 °F	0,01 °C / 0,01 °F	± 1,25 °C / ± 2,50 °F	IEC-60584
	250 a 500 °C / 482 a 932 °F	0,01 °C / 0,01 °F	± 0,75 °C / ± 1,50 °F	IEC-60584
	500 a 1200 °C / 932 a 2192 °F	0,01 °C / 0,01 °F	± 0,50 °C / ± 1,00 °F	IEC-60584
	1200 a 1820 °C / 2192 a 3308 °F	0,01 °C / 0,01 °F	± 0,35 °C / ± 0,70 °F	IEC-60584
TC-R	-50 a 300 °C / -58 a 572 °F	0,01 °C / 0,01 °F	± 0,50 °C / ± 1,00 °F	IEC-60584
	300 a 1760 °C / 572 a 3200 °F	0,01 °C / 0,01 °F	± 0,35 °C / ± 0,70 °F	IEC-60584

Ranges	Resolução	Exatidão	Observações
TC-S -50 a 300 °C / -58 a 572 °F	0,01 °C / 0,01 °F	± 0,50 °C / ± 1,00 °F	IEC-60584
300 a 1760 °C / 572 a 3200 °F	0,01 °C / 0,01 °F	± 0,35 °C / ± 0,70 °F	IEC-60584
TC-E -270 a -150 °C / -454 a -238 °F	0,01 °C / 0,01 °F	± 0,15 °C / ± 0,30 °F	IEC-60584
-150 a 1000 °C / -238 a 1832 °F	0,01 °C / 0,01 °F	± 0,05 °C / ± 0,10 °F	IEC-60584
TC-N -260 a -200 °C / -436 a -328 °F	0,01 °C / 0,01 °F	± 0,50 °C / ± 1,00 °F	IEC-60584
-200 a -20 °C / -328 a -4 °F	0,01 °C / 0,01 °F	± 0,20 °C / ± 0,40 °F	IEC-60584
-20 a 1300 °C / -4 a 2372 °F	0,01 °C / 0,01 °F	± 0,10 °C / ± 0,20 °F	IEC-60584
TC-L -200 a 900 °C / -328 a 1652 °F	0,01 °C / 0,01 °F	± 0,10 °C / ± 0,20 °F	DIN-43710
TC-C 0 a 1500 °C / 32 a 2732 °F	0,01 °C / 0,01 °F	± 0,25 °C / ± 0,50 °F	W5Re / W26Re
1500 a 2320 °C / 2732 a 4208 °F	0,01 °C / 0,01 °F	± 0,35 °C / ± 0,70 °F	W5Re / W26Re

Os valores de exatidão abrangem período de um ano e temperatura ambiente de 20 e 26 °C. Fora desta faixa, a estabilidade térmica é de 0,005 % FS / °C, com referência a 23 °C. Erro de compensação de junta fria: 0,1 °C / 0,2 °F.

1.1.2 - Especificações Técnicas da Comunicação Serial

Interface: RS-232 e RS-485; Tamanho do caracter: 8 bits; Paridade: Sem paridade; Stop bits: 1 stop bit; Protocolo: Modbus:

Modbus é marca registrada da empresa MODICON e é um protocolo de comunicação industrial aberto e muito popular por suas

características técnicas. Modo de transmissão: RTU.

Comprimento da linha:

Interface RS-232 - máximo 15 metros; Interface RS-485 - máximo 1200 metros (1).

Número de instrumentos por linha:

1 instrumento para RS-232;

31 instrumentos para RS-485 (1).

Modo de operação:

Assíncrono;

Half duplex.

(1) O número de instrumentos por linha pode ser aumentado, bem como o comprimento da linha, por meio de repetidores.

1.2 - Código de Encomenda

ST-501

1.3 - Acessórios

• Sensores de Temperatura:

Descrição	Código de Encomenda	Range	Drift com uso	Exatidão	Dimensional
Probe Pt-100 Padrão Industrial - Reto	04.06.0001-21	-200 a 420 °C	0,035 °C	0,030 °C em 420 °C	305 mm x Ø 6,35 mm
Probe Pt-100 Padrão Industrial - Angular 90°	04.06.0007-21	-200 a 420 °C	0,035 °C	0,030 °C em 180 °C	140 mm x Ø 6,35 mm
Probe Pt-100 Padrão Industrial - Angular Longo 90°	04.06.0002-21	-200 a 420 °C	0,035 °C	0,030 °C em 180 °C	170 mm x Ø 6,35 mm
Probe Pt-100 Padrão Secundário	04.06.0004-00	-200 a 480 °C	0,01 °C	0,023 °C em 420 °C	12" x Ø1/4"
Probe Pt-100 Padrão Secundário	04.06.0003-00	-200 a 660 °C	0,03 °C	0,050 °C em 660 °C	15" x Ø1/4"

^{*} Com levantamento dos parâmetros da ITS-90.

• Interfaces de Comunicação:

Descrição	Código de Encomenda
RS-232 - Conector DB-9F (COM1)	06.02.0001 - 00
RS-232 - Conector DB-25F (COM2)	06.02.0003 - 00
RS-485	06.02.0005 - 00

• Pino Banana:

Descrição	Código de Encomenda
Pino banana vermelho	06.22.0002-00
Pino banana preto	06.22.0003-00

- Suporte
- Estojo para Transporte. Código de Encomenda: 06.01.0008-00.
- Software ISOPLAN.
- Certificado de Calibração.

1.4 - Bateria e Carregador

O ST-501 já é fornecido com bateria recarregável, possibilitando até 30 horas de uso contínuo. Acompanha carregador que pode ser ligado a 110 ou 220 Vca. Atenção para mudar a chave de seleção 110-220 Vca no carregador. O tempo para uma carga completa é de 14 horas. O carregador carrega a bateria ao mesmo tempo que alimenta o super termômetro, permitindo que este seja utilizado normalmente enquanto carrega a bateria.

1.5 - Uso do Suporte

A visualização do display do Super Termômetro em bancada é consideravelmente facilitada com o uso do suporte fornecido com o instrumento.

Para utilizá-lo, basta encaixar o Super Termômetro no suporte conforme indicado pela seta A (veja figura abaixo). Para desencaixá-lo, faça o movimento no sentido contrário.

E, para obter um melhor ângulo de visão do display, solte um pouco as manoplas recartilhadas, localizadas nas laterais do suporte, o suficiente para conseguir rotacionar a parte que apóia o instrumento, e gire até obter o melhor ângulo. Aperte novamente as manoplas.

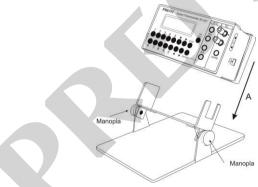


Fig. 1 – Uso do Suporte

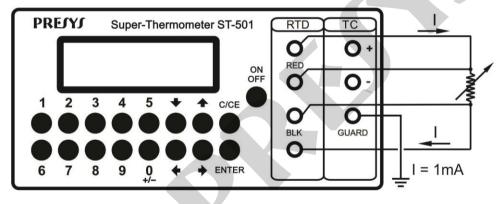
2 - Operação do Super Termômetro ST-501

Assim que o aparelho é ligado, ele passa a realizar rotina de auto-teste e mostra a data da última calibração e o valor da tensão da bateria. A tensão da bateria é continuamente monitorada, e é fornecido aviso caso a tensão esteja baixa. Após o auto-teste, o ST-501 passa para o modo de operação e o display já passa a mostrar a temperatura do sensor que estiver selecionado. A unidade da temperatura exibida pela primeira vez (°C ou °F) é configurável.

Para mostrar o menu principal tecle C/CE:

Através das teclas ①, ♣, ⇔ e ⇒, escolha as opções do menu e tecle **ENTER**.

EXEC: O Super Termômetro entra no modo de operação.


CONF: Acessa as opções de configuração do instrumento. Maiores detalhes no item 2.3 - Menu CONF.

CAL: Esta opção acessa as funções de ajuste do super termômetro ST-501, protegidas por senha. Maiores detalhes na seção 4 - *Calibração*.

2.1 - Ligações de Entrada ou Medição

10

RTD (4 fios)

plug vermelho do probe
plug vermelho do probe
plug preto do probe
plug preto do probe

Fig. 2 – Ligações de Entrada ou Medição (4 fios)

RTD (3 fios)

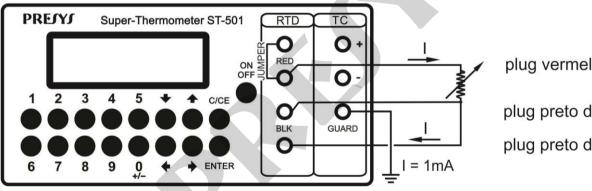


Fig. 3 – Conexões de entrada ou medição (3 fios)

plug vermelho do probe plug preto do probe plug preto do probe

TERMOPAR (TC)

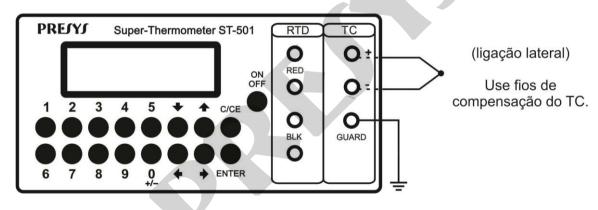


Fig. 4 – Conexões de entrada ou medição (Thermopar)

2.2 - Modo de Operação

Da primeira vez que o instrumento é ligado, o display indica o valor da temperatura do sensor que estiver selecionado. A unidade de temperatura inicial é configurável no nível de CONF.

É possível mudar o modo de visualização do display através das tecla 0, 1, 2 e 3.

Tecla 0: Zera o display. As leituras seguintes são mostradas somente como a diferença em relação ao valor lido no instante em que foi zerado o display.

Tecla 1: Se o sensor selecionado for um probe de termorresistência, mostra simplesmente o valor da resistência em ohms. Se for um probe de termopar, mostra a milivoltagem lida do termopar e também a temperatura da junta fria na mesma unidade em que a temperatura do sensor foi mostrada pela última vez.

Tecla 2: Mostra a temperatura do sensor selecionado em graus Celsius em conjunto com o tipo de parametrização configurado para o sensor. Se for um probe de termopar, também mostra o tipo de termopar configurado.

Tecla 3: Mostra a temperatura do sensor selecionado em graus Fahrenheit em conjunto com o tipo de parametrização configurado para o sensor. Se for um probe de termopar, também mostra o tipo de termopar configurado.

Abaixo encontra-se exemplos de alguns modos de visualização do display.

138.500 (Ω) ITS90 100.231 RTD (°C) ITS90 **250.01** TC-J (°F) STD90 **15.1225** (mV) CJC=27.03°C

⇒ PRB_R	TD	PRB_TC	
LCD	BT	COM	PRG

PRB_RTD: configura o probe de termorresistência. Maiores detalhes no item 2.4 - Configuração do Probe de Termorresistência.

PRB_TC: configura o probe de termopar. Maiores detalhes no item 2.5 - Configuração do Probe de Termopar.

LCD: Esta opção permite a mudança de contraste do display gráfico de cristal líquido. Utilize as teclas ☆ e ♣ até conseguir a melhor visualização do display e termine a operação com a tecla **ENTER**.

BT: Mostra o valor da tensão da bateria desde que o carregador de bateria esteja desconectado. Quando conectado, BT mostra o nível de que sai do carregador de bateria do ST-501. Quando o nível de tensão da bateria está baixo, o display indica **LOW BATTERY** avisando que é necessário a recarga.

Nível da bateria	Estado da bateria	Display
4,0 a 7,0V	normal	
< 4,0V	fraca	LOW BATTERY

COM: Configura o endereço de comunicação do super termômetro ST-501. Maiores detalhes sobre as especificações técnicas e protocolo utilizado pela comunicação serial no item 1.1.2 - Especificações Técnicas da Comunicação Serial e item 5.0 - Protocolo MODBUS de Comunicação Serial.

CF: Configura a unidade de temperatura default do instrumento. Sempre que o mesmo for ligado, a temperatura do sensor será mostrada com esta unidade. A configuração da temperatura de junta fria manual também é solicitada nesta mesma unidade. Tecle **ENTER** e escolha entre graus Celsius e graus Fahrenheit.

2.4 - Configuração do Probe de Termorresistência

Advertência: Somente entre na opção a seguir após seu perfeito compreendimento, pois a configuração dos parâmetros de calibração das termorresistências pode ser alterada.

A senha (Password) de acesso a esta opção é 9875.

Selecione um dos 3 probes para introduzir a configuração e os parâmetros de calibração de até 3 probes de termorresistência.

Prossiga, então, com a configuração do probe escolhido.

⇒ TAG	PARAM	R0
NW	LIMHI	LIMLO

TAG: Nome de identificação do Probe de termorresistência.

R0: Valor de R0 dado no certificado de calibração do sensor. Caso o sensor não tenha um certificado de calibração e o sensor for um Pt-100, insira o valor nominal – em geral 100,000 Ω.

NW: Número de fios do Probe de termorresistência. Escolha entre os mnemônicos **3_WIRES** (ligação a 3 fios) ou **4_WIRES** (ligação a 4 fios).

LIM_HI: Limite máximo de temperatura que o Probe pode atingir ou limite máximo em que o certificado de calibração garante determinado nível de incerteza. Acima deste valor, o display indica **OVER**.

LIM_LO: Limite mínimo de temperatura que o Probe pode atingir ou limite mínimo em que o certificado de calibração garante determinado nível de incerteza. Abaixo deste valor, o display indica **UNDER**.

PARAM: Seleciona o tipo de parametrização a ser utilizado, ou seja, o método de interpolação.

⇒ ITS90	CCVD	CVD	
STD68	STD90		

ITS90: Seleciona parametrização conforme ITS-90 para Termômetros de Resistência de Platina. Maiores detalhes no item 2.4.1 - Coeficientes ITS-90.

CCVD:. Seleciona parametrização para a equação de Callendar-Van Dusen com coeficientes R0, A, B e C. Maiores detalhes no item 2.4.2 - Coeficientes CCVD e CVD.

CVD: Seleciona parametrização para a equação de Callendar-Van Dusen com coeficientes R0, α , δ e β . Maiores detalhes no item 2.4.2 - Coeficientes CCVD e CVD

STD68: Seleciona tabela de linearização segundo norma internacional IEC-60751 para a escala de temperatura IPTS-68.

STD90: Seleciona tabela de linearização segundo norma internacional IEC-60751 para a escala de temperatura ITS-90.

2.4.1 - Coeficientes ITS-90

Ao usar estes coeficientes, o valor de R0 a ser fornecido deve corresponder ao valor da resistência do Probe quando o mesmo estiver na temperatura do ponto triplo da água (0,01°C).

⇒ NEGATIVE_T POSITIVE T

NEGATIVE_T: Acessa os coeficientes a serem utilizados para temperaturas menores ou iguais à temperatura do ponto triplo da água (0,01°C).

⇒ RGE_4 RGE_5

Assim que se entra neste menu, a posição do cursor indica os coeficientes atualmente utilizados pelo super termômetro na leitura de temperaturas menores ou iguais a 0,01°C. Para mudar a faixa, selecione uma nova faixa e tecle ENTER, e então saia do menu NEGATIVE_T.

Faixa de Temperatura Recomendada (NEGATIVE_T)		Coeficientes
RGE_4	-189,3442°C a 0,01°C	A4, B4
RGE_5	-38,8344°C a 0,01°C	A5, B5

Tabela 1 - Faixas de Temperatura de NEGATIVE_T

Selecionando uma das faixas, são mostrados os mnemônicos correspondentes a cada um de seus coeficientes. A faixa RGE_4, por exemplo, apresenta os mnemônicos A4, EA4, B4 e EB4:

⇒ A4	EA4	B4	EB4	

Ao entrar o valor de um coeficiente, deve-se separá-lo em mantissa e expoente assim como utilizado em notação científica. Para um coeficiente A4 de -3,05870.10⁻⁶, por exemplo, digite sua mantissa (um inteiro e parte fracionária de sete algarismos) no mnemônico A4 e o expoente, no mnemônico EA4. Assim, tem-se A4 = -3,0587000 e EA4 = -06.

Deve-se observar que o sinal de um número pode ser invertido ao se apertar a tecla ZERO quando houver um número nulo no display. Isso muda o sinal de + para - e vice-versa.

POSITIVE_T: Acessa os coeficientes a serem utilizados para temperaturas maiores que a temperatura do ponto triplo da água (0,01°C).

⇒ RGE_5	RGE_6	
RGE_7	RGE_8	
RGE_9	RGE_10	
RGE_11		

Assim que se entra neste menu, a posição do cursor indica a faixa atual utilizada pelo termômetro na leitura de temperaturas maiores que 0,01°C. Para mudar a faixa, selecione uma nova faixa e tecle **ENTER**, e então saia do menu **POSITIVE_T**.

A terceira linha do display mostrada acima é obtida ao se posicionar o cursor na segunda linha e apertar a tecla \P .

Faixa de Temperatura Recomendada (POSITIVE_T)		Coeficientes
RGE_6	0,01°C a 961,78°C	A6, B6, C6 e D
RGE_7	0,01°C a 660,323°C	A7, B7 e C7
RGE_8	0,01°C a 419,527°C	A8 e B8
RGE_9	0,01°C a 231,928°C	A9 e B9
RGE_10	0,01°C a 156,5985°C	A10
RGE_11	0,01°C a 29,7646°C	A11
RGE_5	0,01°C a 29,7646°C	A5 e B5

Tabela 2 - Faixas de Temperatura de POSITIVE_T

A configuração dos coeficientes de cada faixa de temperatura segue as mesmas considerações feitas para as faixas de temperatura do grupo NEGATIVE_T.

Deve-se observar que os grupos POSITIVE_T e NEGATIVE_T incluem o mnemônico comum RGE_5. Caso deseje utilizar seus coeficientes tanto para a faixa positiva quanto para a negativa, configure os coeficientes normalmente para a faixa positiva e negativa.

Maiores detalhes sobre a Escala Internacional de Temperatura e os métodos de interpolação envolvidos utilizando os coeficientes acima, refira-se a: Mangum,B.W. and Furukawa, G.T., "Guidelines for Realizing the International Temperature Scale of 1990 (ITS-90)", NIST Technical Note 1265, National Institute of Standards and Technology, 1990.

Os coeficientes CVD pertencem à equação de Callendar-Van Dusen com coeficientes α (Alpha), δ (Delta) e β (Beta). Configure os coeficientes conforme explicado no item anterior. O menu de configuração destes coeficientes é dado abaixo:

⇒ ALPHA	EALPHA
DELTA	EDELTA
BETA	EBETA

Equação:

$$R(t) = R_0 \cdot \left\{ 1 + ALPHA \cdot \left[t - DELTA \cdot \left(\frac{t}{100} \right) \cdot \left(\frac{t}{100} - 1 \right) - BETA \cdot \left(\frac{t}{100} - 1 \right) \cdot \left(\frac{t}{100} \right)^3 \right] \right\},$$

BETA = 0 para $t \ge 0$ °C.

Os coeficientes CCVD pertencem à equação Callendar-Van Dusen rearranjada de outra forma usando coeficientes A, B e C. Configure os coeficientes conforme explicado no item anterior. O menu de configuração destes coeficientes é dado abaixo:

⇒ A	EA	В	EB	
C	EC			

22

$$R(t) = R_0 \cdot \left\{ 1 + A \cdot t + B \cdot t^2 + C \cdot t^3 \cdot \left(t - 100^{\circ} \text{C} \right) \right\} \text{, C = 0 para } t \ge 0 \text{ °C}.$$

Essas equações são normalmente utilizadas na escala de temperatura IPTS-68, onde t se refere à temperatura nesta escala e R_0 , à resistência a 0 °C. No entanto também podem ser utilizadas na escala ITS-90.

2.5 - Configuração do Probe de Termopar

Advertência: Somente entre na opção a seguir após seu perfeito compreendimento, pois a configuração dos parâmetros de calibração dos termopares pode ser alterada.

A senha (Password) de acesso a esta opção é 9875.

Selecione um dos 3 probes para introduzir a configuração e os parâmetros de calibração de até 3 probes de termopar.

⇒ 1 2 3

Prossiga, então, com a configuração do probe escolhido.

⇒ TAG PARAM LIMHI LIMLO

TAG: Nome de identificação do Probe de termopar.

LIM_HI: Limite máximo de temperatura que o Probe pode atingir ou limite máximo em que o certificado de calibração garante determinado nível de incerteza. Acima deste valor, o display indica **OVER**.

LIM_LO: Limite mínimo de temperatura que o Probe pode atingir ou limite mínimo em que o certificado de calibração garante determinado nível de incerteza. Abaixo deste valor, o display indica **UNDER**.

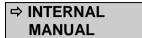
PARAM: Seleciona o tipo de parametrização a ser utilizado, ou seja, o método de interpolação.

⇒ ITS90	STD90	
STD68		

ITS90: Seleciona parametrização conforme ITS-90 para Termopares.

Escolha entre os tipos R, S e B.

COEF: Seleciona configuração dos coeficientes de calibração do termopar (C0, C1, C2 e C3). Esses coeficientes corrigem a força eletromotriz (E) dada pela tabela de linearização do termopar segundo norma IEC-60751. Após a correção, a força eletromotriz do termopar obedece a seguinte fórmula:


E' = E+C0+C1.T+C2.T²+C3.T³, sendo T a temperatura dada em °C e E' e E dadas em mV.

⇒ C0	EC0	C1	EC1	
C2	EC2	C3	EC3	

Ao entrar o valor de um coeficiente, deve-se separá-lo em mantissa e expoente assim como utilizado em notação científica. Para um coeficiente C0 de -3,05870.10⁻⁶, por exemplo, digite sua mantissa (um inteiro e parte fracionária de sete algarismos) no mnemônico C0 e o expoente, no mnemônico EC0. Assim, tem-se C0 = -3,0587000 e EC0 = -06.

Deve-se observar que o sinal de um número pode ser invertido ao se apertar a tecla ZERO quando houver um número nulo no display. Isso muda o sinal de + para - e vice-versa.

CJC: Seleciona configuração do tipo de compensação de junta fria: interna ou manual.

INTERNAL: O próprio instrumento mede a temperatura da junta fria, ou seja, a temperatura do borne onde o termopar está ligado.

MANUAL: O valor da temperatura da junta fria deve ser fornecido pelo operador.

STD68: Seleciona tabela linearização segundo norma internacional IEC-60584 e DIN 43710 para a escala de temperatura IPTS-68.

STD90: Seleciona tabela de linearização segundo norma IEC-60584 e DIN 43710 para a escala de temperatura ITS-90.

⇒R	S	В	N	С	
J	K	T	Е	L	

Escolha entre os tipos R, S, B, N, C, J, K, T, E e L.

No menu seguinte, escolha o tipo de compensação de junta fria: interna ou manual.

⇒ INTERNAL MANUAL

INTERNAL: O próprio instrumento mede a temperatura da junta fria, ou seja, a temperatura do borne onde o termopar está ligado.

MANUAL: O valor da temperatura da junta fria deve ser fornecido pelo operador.

3.0 - Mensagens de Aviso do Super Termômetro

Aviso	Significado	Procedimento
RAM ERROR READ MANUAL	Memória RAM com problema	Desligar e ligar o instrumento. Se o erro persistir, envie-o para fábrica
EEPROM ERROR READ MANUAL	Memória EEPROM com problema	Idem ao anterior
LOW BATTERY	Nível da tensão da bateria baixo	Conectar o carregador de bateria ao ST-501
UNDER / OVER	Sinal de entrada fora das especificações ou da faixa dada por LIM_LOW e LIM_HIGH de PRB_RTD	Consultar o item 1.1.1 de Especificações de Entrada ou os mnemônicos LIM_LOW e LIM_HIGH
???.???°C	Sensor de entrada aberto	Verificar as ligações de entrada do sensor

Advertência: Somente entre nas opções a seguir, após seu perfeito compreendimento. Caso contrário, poderá ser necessário retornar o instrumento à fábrica para recalibração! Nessa seção o termo calibração significa ajuste (conforme uso no passado).

Selecione a opção **CAL** no menu principal e pressione **ENTER**. Deve-se então, introduzir a senha (**PASSWORD**) 9875 de acesso ao menu de calibração.

A senha funciona como uma proteção às faixas de calibração. Uma vez satisfeita a senha, o menu exibe as opções:

Escolha então, a faixa de entrada (**IN**). **DATE** é a opção que permite registrar a data em que se realizou a calibração e uma vez preenchida, aparecerá toda vez que o instrumento for religado. A data somente pode ser atualizada depois de efetuada uma calibração. As opções de calibração de **IN** são:

4.1 - Calibração das Entradas

Selecione o mnemônico correspondente e injete os sinais mostrados nas tabelas abaixo.

Na calibração das entradas, o display exibe na 2ª linha o valor medido pelo Super Termômetro e na 1ª linha o mesmo valor expresso em porcentagem.

Observe que os sinais injetados precisam apenas estar próximos dos valores da tabela.

Uma vez injetado o sinal, armazene os valores do 1º e 2º ponto de calibração, através das teclas 1 (1º ponto) e 2 (2º ponto).

Para a localização dos bornes mencionados adiante, refira-se à figura abaixo:

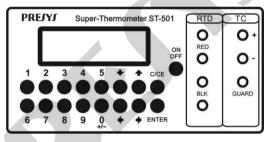


Fig. 5 – Calibração de Entradas

Calibração de mV

Use os bornes TC (+) e TC (-).

Entrada mV	1º ponto	2º ponto
Faixa única	0,0000 mV	70,0000 mV

A calibração da entrada, em Ω , é feita em duas etapas:

a) Aplicação de sinal de mV:

Para as calibrações abaixo, deixe os bornes RTD3 e RTD4 curto-circuitados.

Sinal de mV	Bornes	1º ponto	2º ponto
G_2	RTD2(+) e RTD3(-)	0,0000 mV	600,0000 mV
G_3	RTD2(+) e RTD3(-)	0,0000 mV	120,0000 mV
G_4	RTD2(+) e RTD3(-)	0,0000 mV	70,0000 mV
V_OHM3	RTD3(+) e TC(-)	250,000 mV	350,000 mV
V_OHM4	RTD4(+) e TC(-)	250,000 mV	350,000 mV

b) Aplicação de resistores padrões:

Conecte uma década ou resistores padrões aos bornes RTD1, RTD2, RTD3 e RTD4 (ligação a quatro fios).

Resistores	1º ponto	2º ponto
OHM3	20,000 Ω	$50,000~\Omega$
OHM2	80,000 Ω	150,000 Ω
OHM1	150,000 Ω	400,000 Ω

A calibração da junta fria (CJC) é feita medindo-se a temperatura do borne TC (-). Armazene apenas no 1º ponto (tecla 1).

Junta Fria	1º ponto
CJC	32,03 °C

5.0 - Protocolo MODBUS da Comunicação Serial

O protocolo de comunicação define uma estrutura de linguagem entre dispositivos conectados em rede. Ou seja, ele determina como se estabelece um início ou fim de contato, como uma mensagem é trocada etc.

No caso específico do MODBUS o processo de troca de mensagem é do tipo Mestre-Escravo. A rede, composta por diversos dispositivos, deve comportar apenas um dispositivo denominado Mestre (normalmente um microcomputador da linha IBM-PC), sendo os demais denominados Escravos (instrumentos).

O Mestre sempre inicia a comunicação. Ele pode enviar uma mensagem a um determinado Escravo, identificado por um número (endereço), ou a todos os Escravos da rede de uma só vez (mensagem do tipo Broadcast). Cabe ao Escravo responder sempre ao Mestre desde que a mensagem não seja do tipo Broadcast.

5.1 - Modos de Transmissão

A mensagem é composta por um conjunto de caracteres. O caracter é a menor unidade de informação. A transmissão de um caracter obedece a determinadas características configuradas pelo usuário como baud rate, bit de paridade, número de stop bits e modo de transmissão.

O modo de transmissão define a estrutura de um caracter a ser transmitido. De acordo com o protocolo MODBUS são disponíveis dois modos de transmissão: RTU e ASCII, porém este instrumento só dispõe do modo RTU.

No modo RTU (Remote Terminal Unit), o caracter é composto de 8 bits.

Por exemplo, o valor 177 é expresso em binário como 10110001 e em hexadecimal como B1h. Portanto os oito bits a serem transmitidos são 10110001;

5.2 - Detecção de Erro

O sistema MODBUS tem métodos específicos para tratar um erro.

Um erro de transmissão de um caracter é detectado pelo bit de paridade ou pelo erro no formato da transmissão de um caracter (start bit e stop bits). Infelizmente, só estes dois tipos de erro não garantem a existência ou não de erros na transmissão de uma mensagem. Para aumentar ainda mais a confiança na transmissão, existe o campo Verificação de Erro dentro da mensagem que será explicada posteriormente.

O Escravo que detectar um erro de transmissão deve abortar o tratamento da mensagem e aguardar a próxima mensagem.

O Mestre fica na expectativa de uma mensagem de retorno. Se esta mensagem não for retornada dentro de um determinado período de tempo, o Mestre deve interpretar como erro de transmissão e retransmitir a mensagem. O tempo máximo que o Mestre deve esperar é função do baud rate, modo de transmissão e do tempo de scan do Escravo.

5.3 - Formato da Mensagem

O formato da mensagem depende do modo de transmissão. Mas existem quatro campos fundamentais a saber:

- 1-Endereço do Escravo;
- 2-Código da Função
- 3-Dados
- 4-Verificação de Erro

O campo de Endereço do Escravo consiste de um caracter RTU. Este campo identifica o Escravo. Quando o Mestre deseja trocar mensagem com um Escravo específico, o valor deste campo deve ser o endereço deste Escravo. Quando o Mestre deseja enviar uma mensagem do tipo Broadcast (para todos os Escravos da rede), este campo deve receber o valor 0.

O campo de Código da Função também consiste de um caracter RTU. Este campo está relacionado com a função que o Escravo deve executar ao receber a mensagem. O protocolo MODBUS permite inúmeras funções. Entretanto, para efeito de comunicação com este instrumento somente 5 são suficientes. As funções disponíveis estão descritas e exemplificadas adiante.

O campo de Dados contém as informações necessárias para o Escravo executar uma função ou as informações fornecidas pelo Escravo em resposta ao Mestre.

O campo de Verificação de Erro permite ao receptor da mensagem verificar se houve erros durante a transmissão. Este campo deve ser preenchido com o auxílio de algoritmos que calculam um número gerado a partir dos caracteres que formam a mensagem. No modo RTU, o algoritmo usado é o *Cyclic Redundancy Check* (CRC). No item 5.6 encontra-se o algoritmo escrito em linguagem "C".

Formato do modo RTU:

Neste formato, a mensagem deve ser enviada de modo contínuo. O receptor deve interpretar o fim de mensagem após passar um período igual ou superior ao tempo necessário para transmitir 3 e ½ caracteres sem que nenhum outro caracter tenha chegado.

		Código da Função	Dados	CRC	T1 T2 T3
	1 caracter	1 caracter	N x 1 carac.	2 caracteres	

1 caracter (carac.) = 8 bits, 1 start bit, 1 ou 2 stop bits e 1 bit de paridade opcional

5.4 - Descrição das Funções

As funções disponíveis são: 3, 4, 6, 8, e 16. Os exemplos dados a seguir referem-se ao modo RTU. A mensagem do tipo Broadcast só é permitida para as funções 6 e 16.

Com estas funções é possível ler ou modificar (escrever) o valor de certas variáveis do instrumento. As funções 3, 4, 6 e 16 referemse a variáveis do tipo registro. Este tipo de variável pode assumir valores inteiros de até dois bytes (de 0 a 65535 para valores não sinalizados ou de -32768 a 32767 para valores sinalizados).

Função 3 - Read Output Registers Função 4 - Read Input Registers

Pergunta:

Estas funções são usadas para se obter o conteúdo de um ou vários registros consecutivos de um Escravo. O campo de Dados deve ser preenchido com o endereço inicial do registro, seguido pela quantidade de registros que se deseja saber o valor. A quantidade máxima de registros permitida pelo *software* dos instrumentos é 10.

A mensagem abaixo pede ao Escravo de endereço 01 que retorne o valor dos registro 50, 51, 52 e 53 (4 registros ao todo).

Endereço	Função	End. Inicial (MSB)	End. Inicial (LSB)	Quantid. de reg. (MSB)	Quantid. de reg. (LSB)	CRC (MSB)	CRC (LSB)
01	03	00	32	00	04	E5	C6

Obs: -Os valores mostrados na tabela acima e nas próximas estão expressos em hexadecimal;

-MSB significa byte mais significativo e LSB significa byte menos significativo.

Resposta:

O campo de Dados deve conter o número de caracteres a serem enviados, seguido dos caracteres com a resposta. A mensagem abaixo responde ao Mestre que o valor dos registros valem 0, 0, 7 e 208 respectivamente.

End.	Função	N.° de caract.	Reg. 50 (MSB)	Reg. 50 (LSB)	Reg. 51 (MSB)	Reg. 51 (LSB)	Reg. 52 (MSB)	Reg. 52 (LSB)	Reg.53 (MSB)	Reg.53 (LSB)	CRC (MSB)	CRC (LSB)
01	03	08	00	00	00	00	00	07	00	D0	25	8A

Função 6 - Preset Single Register

Pergunta:

Esta função é usada para se modificar o valor de um único registro do Escravo. O campo de Dados deve ser preenchido com o endereço do registro, seguido pelo seu novo valor.

A mensagem a seguir pede ao Escravo de endereço 01 que mude o valor do registro 60 para 1:

Endereço	Função	End. do Registro (MSB)	End. do Registro (LSB)	Valor do Registro (MSB)	Valor do Registro (LSB)	CRC (MSB)	CRC (LSB)
01	06	00	3C	00	01	88	06

Resposta:

A mensagem de resposta deve ser idêntica àquela enviada pelo Mestre. Ela deve ser transmitida após a modificação do registro. Para o exemplo acima, o Escravo deve responder da seguinte forma:

Endereço	Função	End. do Registro (MSB)	End. do Registro (LSB)	Valor do Registro (MSB)	Valor do Registro (LSB)	CRC (MSB)	CRC (LSB)
01	06	00	3C	00	01	88	06

Função 8 - Loopback Test

Pergunta:

Esta função tem a finalidade de testar o sistema de comunicação. O campo de Dados deve ser preenchido com o código do diagnóstico (2 bytes) seguido pela ação a ser realizada (2 bytes). O único código de diagnóstico implementado para esta função é o zero. Este código pede a devolução do dado enviado (ação a ser realizada). Neste caso, a ação a ser realizada pode ser qualquer valor.

A mensagem abaixo pede ao Escravo que retransmita a mesma mensagem:

Endereço	Função	Código do Diagnóst. (MSB)	Código do Diagnóst. (LSB)	Ação a se realizar (MSB)	Ação a se realizar (LSB)	CRC (MSB)	CRC (LSB)
11	08	00	00	A5	37	D8	1D

Resposta:

Para este código de diagnóstico (0), a mensagem a ser enviada deve ser idêntica àquela transmitida pelo Mestre. Para o exemplo acima, o Escravo deve retornar a seguinte mensagem:

Endereço	Função	Código do Diagnóst. (MSB)	Código do Diagnóst. (LSB)	Ação a se realizar (MSB)	Ação a se realizar (LSB)	CRC (MSB)	CRC (LSB)
11	08	00	00	A5	37	D8	1D

Função 16 - Preset Multiple Registers

Pergunta:

Esta função é usada para se modificar o valor de um ou vários registros do Escravo ao mesmo tempo. O campo de Dados deve ser preenchido com o endereço inicial do conjunto de registros, seguido pela quantidade de registros a serem modificados, o número de caracteres a serem enviados e os novos valores dos registros. A quantidade máxima de registros permitida pelo *software* dos instrumentos é 10.

A mensagem a seguir pede ao Escravo de endereço 01 que mude o valor do registro 60 para 01 e o valor do registro 61 para 0.

End.	Funçã o	End. Inicial MSB	End. Inicial LSB	Quant. Reg. (MSB)	Quant. Reg. (LSB)	N.° de carac.	Reg 60 MSB	Reg. 60 LSB	Reg 61 MSB	Reg. 61 LSB	CRC MSB	CRC LSB
01	10	00	3C	00	02	04	00	01	00	00	31	2E

Resposta:

O campo de Dados deve ser preenchido com o endereço inicial do conjunto de registros e a quantidade de registros modificados. Para o exemplo acima, o Escravo deve retornar a seguinte mensagem:

Endereço	Função	End. Inicial (MSB)	Endereço Inicial (LSB)	Quantid. de Reg. (MSB)	Quantid. de Reg. (LSB)	CRC (MSB)	CRC (LSB)
01	10	00	3C	00	02	81	C4

Quando por alguma razão o Escravo não pode executar uma determinada ação pedida pelo Mestre, o Escravo deve retornar uma mensagem de erro da seguinte forma:

-o campo de Código da Função deve ser preenchido como o Código da Função enviado pelo Mestre somado de 128 unidades.

-o campo de Dados deve ser preenchido com um byte contendo o número do Código de Exceção. Os Códigos implementados foram:

01: quando a função pedida pelo Mestre não é possível de ser realizada.

02: quando o endereço do registro está fora da faixa permitida.

03: quando o valor do campo de Dados está fora da faixa permitida.

Exemplo:

Suponha que o Mestre envie ao Escravo uma mensagem para ler um registro (função 3) cujo endereço não exista. O Escravo deve retornar a seguinte mensagem:

Endereço	Função	Código de Exceção	CRC (MSB)	CRC (LSB)
11	83	02	C1	34

5.5 - Relação dos Registros Utilizados

A seguir encontra-se em forma de tabela uma relação com todos os registros encontrados no instrumento, os respectivos endereços e as faixas de valores permitidos.

Endereço	Registros	Observações
50 a 53 ⁽⁾	Sinal de entrada	Somente leitura
54	Número de casas decimais do sinal de entrada	Somente leitura
55 a 58	Temperatura da junta fria	Somente leitura
59	Número de casas decimais da temperatura da junta fria	Somente leitura
60	Forma de mostrar o sinal no display	0 - ohms ou mV e junta fria (dependendo do sensor configurado); 1 - °C ou °F
61	Unidade de temperatura a ser mostrada no display	0 - °C 1 - °F
100 a 109	Primeiro ao décimo caracter do Tag do Probe de termorresistência 1	'A' a 'Z', '0' a '9' e ' '.
110 a 113	Temperatura máxima mostrada no display para Probe de termorresistência 1	Valor com 3 casas decimais
114 a 117	Temperatura mínima mostrada no display para Probe de termorresistência 1	Valor com 3 casas decimais
118	Tipo de parametrização ou tabela utilizada para Probe de termorresistência 1	0 - ITS90 1 - CCVD 2 - CVD 3 - STD68 4 - STD90

119	Número de fios na ligação do Probe de termorresistência 1	0 - ligação a 3 fios 1- ligação a 4 fios
120 a 123	Valor de R0 para Probe de termorresistência 1	Valor com 6 casas decimais
124 a 127	Valor da mantissa do parâmetro A5, A6, A7, A8, A9, A10 ou A11 (para ITS90), A (para CCVD) ou Alpha (para CVD) expresso em notação científica para Probe de termorresistência 1	Valor com 7 casas decimais
128	Valor do expoente do parâmetro A5, A6, A7, A8, A9, A10 ou A11 (para ITS90), A (para CCVD) ou Alpha (para CVD) expresso em notação científica para Probe de termorresistência 1	-19 a 19
129 a 132	Valor da mantissa do parâmetro B5, B6, B7, B8 ou B9 (para ITS90), B (para CCVD) ou Delta (para CVD) expresso em notação científica para Probe de termorresistência 1	Valor com 7 casas decimais
133	Valor do expoente do parâmetro B5, B6, B7, B8 ou B9 (para ITS90), B (para CCVD) ou Delta (para CVD) expresso em notação científica para Probe de termorresistência 1	-19 a 19
134 a 137	Valor da mantissa do parâmetro C6, C7 (para ITS90), C (para CCVD) ou Beta (para CVD) expresso em notação científica para Probe de termorresistência 1	Valor com 7 casas decimais
138	Valor do expoente do parâmetro C6, C7 (para ITS90), C (para CCVD) ou Beta (para CVD) expresso em notação científica para Probe de termorresistência 1	-19 a 19
139 a 142	Valor da mantissa do parâmetro D (para ITS90) expresso em notação científica para Probe de termorresistência 1	Valor com 7 casas decimais

143	Valor do expoente do parâmetro D (para ITS90) expresso em notação científica para Probe de termorresistência 1	-19 a 19
144 a 147	Valor da mantissa do parâmetro A4 ou A5 (para ITS90 e temperatura negativa) expresso em notação científica para Probe de termorresistência 1	Valor com 7 casas decimais
148	Valor do expoente do parâmetro A4 ou A5 (para ITS90 e temperatura negativa) expresso em notação científica para Probe de termorresistência 1	-19 a 19
149 a 152	Valor da mantissa do parâmetro B4 ou B5 (para ITS90 e temperatura negativa) expresso em notação científica para Probe de termorresistência 1	Valor com 7 casas decimais
153	Valor do expoente do parâmetro B4 ou B5 (para ITS90 e temperatura negativa) expresso em notação científica para Probe de termorresistência 1	-19 a 19
154	Parâmetros utilizados para leituras de temperatura positiva para Probe de termorresistência 1	0 - A5 e B5 1 - A6, B6, C6 e D 2 - A7, B7 e C7 3 - A8 e B8 4 - A9 e B9 5 - A10 6 - A11
155	Parâmetros utilizados para leituras de temperatura negativa para Probe de termorresistência 1	0 - A4 e B4 1 - A5 e B5
156 a 211	Idem aos parâmetros 100 a 155, porém referentes ao Probe de termorresistência 2	

212 a 267	Idem aos parâmetros 100 a 155, porém referentes ao Probe de termorresistência 3	
268 a 277	Primeiro ao décimo caracter do tag do Probe de Termopar 1	'A' a 'Z', '0' a '9' e ' '.
278 a 281	Temperatura máxima mostrada no display para Probe de Termopar 1	Valor com duas casas decimais
282 a 285	Temperatura mínima mostrada no display para Probe de Termopar 1	Valor com duas casas decimais
286	Tipo de parametrização ou tabela utilizada para Probe de Termopar 1	0 - ITS90 1 - STD90 2 - STD68
287	Tipo de Termopar para Probe de Termopar 1	0 - termopar tipo R 1 - termopar tipo S 2 - termopar tipo B 3 - termopar tipo N 4 - termopar tipo C 5 - termopar tipo J 6 - termopar tipo K 7 - termopar tipo T 8 - termopar tipo E 9 - termopar tipo L
288	Tipo de compensação de junta fria para Probe de Termopar 1	0 - interna 1 - manual
289 a 290	Temperatura de junta fria manual para Probe de Termopar 1	Valor com 2 casas decimais

291	Unidade de Temperatura para Probe de Termopar 1	0 - °C
		1 - °F
292 a 295	Valor da mantissa do parâmetro C0 (para ITS90) expresso em notação científica para Probe de Termopar 1	Valor com 7 casas decimais
296	Valor do expoente do parâmetro C0 (para ITS90) expresso em notação -19 a 19 científica para Probe de Termopar 1	
297 a 300	Valor da mantissa do parâmetro C1 (para ITS90) expresso em notação científica para Probe de Termopar 1	Valor com 7 casas decimais
301	Valor do expoente do parâmetro C1 (para ITS90) expresso em notação científica para Probe de Termopar 1	-19 a 19
302 a 305	Valor da mantissa do parâmetro C2 (para ITS90) expresso em notação científica para Probe de Termopar 1	Valor com 7 casas decimais
306	Valor do expoente do parâmetro C2 (para ITS90) expresso em notação científica para Probe de Termopar 1	-19 a 19
307 a 310	Valor da mantissa do parâmetro C3 (para ITS90) expresso em notação científica para Probe de Termopar 1	Valor com 7 casas decimais
311	Valor do expoente do parâmetro C3 (para ITS90) expresso em notação científica para Probe de Termopar 1	-19 a 19
312 a 355	Idem aos parâmetros 268 a 311, porém referentes ao Probe de Termopar 2	
356 a 399	Idem aos parâmetros 268 a 311, porém referentes ao Probe de Termopar 3	
400	Seleciona a leitura de termorresistência ou termopar	0 - termorresistência 1 - termopar

401	Seleciona uma das 3 termorresistências	0 - termorresistência 1 1 - termorresistência 2 2 - termorresistência 3
402	Seleciona um dos 3 termopares	0 - termopar 1 1 - termopar 2 2 - termopar 3

Obs.:

A faixa de valores de certos registros enumerados na tabela acima apresentam número de casas decimais fixo. Para efeito de formação da mensagem, deve-se ignorar a presença deste ponto decimal. Desta forma, para mudar o valor da temperatura de compensação da junta fria (registros 385|386) para 30,35°C, por exemplo, é necessário que o valor de dois registros mudem (byte mais significativo e byte menos significativo) de modo que o valor resultante seja 3035.

(i) Os valores formados por 4 registros consecutivos estão em formato de inteiro longo, correspondendo cada registro a um byte do inteiro longo (o byte mais significativo pertence ao registro com número de identificação menor). Por exemplo, o valor 300001 (000493E1h, em hexadecimal) é lido pelos registros 50 a 53 como: 0|4|147|225 ou 0h|4h|93h|E1h (representado em hexadecimal).

5.6 - Cálculo do Campo Verificação de Erro

A rotina abaixo mostra o algoritmo para calcular este campo feita em linguagem "C".

```
unsigned int CalcCRC (unsigned char *Str, unsigned char NumBytes)
         unsigned int
                            Crc = 0xFFFF;
         unsigned char
                            i , j;
         for (i = 0; i < NumBytes; i++)
                   Crc ^= Str[i];
                   for (j = 0; j < 8; j++)
                             if (Crc & 1)
                                      Crc >>= 1;
                                       Crc ^= 0xA001;
                             else
                                      Crc >>= 1;
         return (Crc);
```

Obs.: O verdadeiro valor do CRC corresponde ao valor de retorno desta função com o byte mais significativo trocado com o byte menos significativo.

PRESYS | Presys Instrumentos e Sistemas Ltda.

Rua Luiz da Costa Ramos, 260 - Saúde - São Paulo - SP - CEP 04157-020

Tel.: 11 3056.1900 - Fax: 11 5073.3366 - www.presys.com.br - vendas@presys.com.br

