Versão Especial – Sistema de perda de carga na grade.

Solicitante Responsável: _	 	
Depto.:	 	

As informações contidas nesta folha têm prioridade sobre aquelas do manual técnico do instrumento.

COMPORTAMENTO:

Este instrumento possui 3 entradas para sinal de corrente 4-20 mA denominados canais 1, 2 e 3 (CA-1, CA-2, e CA-3, respectivamente). O CA-1 localiza-se nos terminais 1(+) e 4(-), o CA-2 localiza-se nos terminais 2(+) e 3(-) e o CA-3 localiza-se nos terminais 5(+) e 6(-). Para visualizar as ligações da borneira consulte o diagrama de conexões (Fig.3) localizado no fim deste documento.

1) Funcionamento

Este instrumento especial possui aplicação específica para cálculo de perda de carga na grade de comportas de usinas hidrelétricas. As três entradas (CA-1, CA-2 e CA-3) são utilizadas para medir a pressão diferencial ou vazão turbinada (dependendo da configuração no nível GERAL, mnemônico SENS), nível da montante e nível da jusante, respectivamente. A diferença de nível entre a montante e a jusante está relacionada matematicamente com a vazão turbinada Q_0 da seguinte forma:

$$\Delta H = k \cdot Q_n^2 \quad (1)$$

Onde: $\Delta H =$ diferença de nível de água entre a montante e a jusante, em mca (metros de coluna de água);

k = fator de proporcionalidade;

 $Q_{_{n}}=\,$ vazão turbinada de água, em m³/s (metros cúbicos por segundo).

Se o canal 1 estiver configurado para medir a vazão turbinada, sua indicação entra diretamente em (1). Caso contrário, se o canal 1 estiver configurado para medir a pressão diferencial ΔP , a vazão turbinada é calculada por

$$Q_n = Corr^{1/2} \cdot Conv \cdot \Delta P^{1/2}$$
 (2)

Note que a extração da raiz quadrada de ΔP deve ser habilitada na opção SQRT para o canal 1 no nível ENTRADAS. Os valores de ENG HIGH e ENG LOW para este caso são diferentes. Para tal, consulte a configuração das entradas na página 5 deste documento.

O fator de proporcionalidade k varia conforme a condição de funcionamento do sistema. Caso a grade possua algum tipo de obstrução, a diferença de nível entre a montante e a jusante tende a aumentar e para um valor de vazão turbinada Q_n constante, o valor de k aumenta. Para a condição normal de funcionamento (sem obstrução na grade), o valor de k=k_{normal} é 2,30039x10⁻⁶

O cálculo da perda de carga na grade é efetuado da seguinte forma:

PRESYS INSTRUMENTOS E SISTEMAS LTDA. RUA LUIZ DA COSTA RAMOS, 260 - SAÚDE SÃO PAULO - S.P. - CEP. 04157-020 - FONE: (11) 5073.1900 - FAX: (11) 5073.3366

¹ O valor de k_{normal} não é fixo. Para alterá-lo, consulte a seção 2- Configuração deste documento.

$$\Delta H_{\text{grade}} = \Delta H_{\text{medido}} - \Delta H_{\text{normal}}$$
 (3)

Onde: $\Delta H_{\rm orade}$ = perda de carga na grade, em mca;

 $\Delta H_{\mathrm{medido}} =$ diferença das indicações dos canais 2 e 3, em mca;

 $\Delta H_{\text{normal}} = \text{variação}$ de carga em condições normais, calculada por (1), com $\text{k}_{\text{normal}},$ em mca.

É possível configurar as saídas analógicas para retransmitir o valor de Perda na Grade ou de ΔH_{medido} . Para maiores detalhes consulte a seção 2 - Configuração.

Além do cálculo da perda na grade, esse instrumento possui também a função de alarmes de **G.OBST** que atuam de maneira a detectar possíveis obstruções na grade da comporta. Efetuando a configuração dos relés para alarme de **G.OBST** (ver detalhes na seção 2 - Configuração deste documento), os relés ficam disponibilizados da seguinte forma:

1) Relé 2: indicação do equilíbrio da pressão de comporta ensecadeira.

Esse relé indica que a diferença entre o nível da montante medido e o nível da jusante medido (ΔH_{medido}) encontra-se em equilíbrio. Para este relé, deve-se configurar os valores de setpoint de alarme (SP, em mca) e histerese (HIST, em mca). Matematicamente:

- i) Se $\Delta H_{\text{medido}} < SP$, então o relé está em condição de alarme;
- ii) Se $\Delta H_{\text{medido}} > SP + HIST$, então o relé está fora da condição de alarme.
- 2) Relé 3: G.OBST Situação de alarme.

Este relé indica que a obstrução da grade encontra-se em 30%. As condições para o alarme de **G.OBST** 30% são as seguintes:

- iii) Se $\Delta H_{\text{medido}} >= SP_{\text{G.OBST(ALARME)}}$ e $\Delta H_{\text{MIN}} >= SP_{\text{MIN(ALARME)}}$, o relé está em condição de alarme:
- iv) Se $\Delta H_{\text{medido}} < SP_{\text{G.OBST(ALARME)}}$ ou $\Delta H_{\text{MIN}} < SP_{\text{MIN(ALARME)}} \text{HIST}_{\text{MIN(ALARME)}}$, o relé está fora da condição de alarme.

O setpoint de alarme $SP_{G.OBST}$ não é configurado manualmente, pois o mesmo depende da vazão turbinada Q_n , enquanto SP_{MIN} e $HIST_{MIN}$ são os mínimos valores de setpoint e histerese, respectivamente, configurados através dos parâmetros SP.M e HI.M no nível ALARMES para o relé 3 com a opção G.OBST. O termo ΔH_{MIN} pode assumir dois valores distintos, dependo da configuração: caso a configuração esteja em M-J (**M**ontante - **J**usante), $\Delta H_{MIN} = \Delta H_{medido}$. Por outro lado, caso a configuração esteja em O-L (Perda **O**bstrução - **L**impa), $\Delta H_{MIN} = \Delta H_{G.OBST30\%}$ - ΔH_{normal} . Para o cálculo de ΔH é utilizada a equação (1), onde SP_{GOBST} nada mais é que um valor de variação de carga, como indicado abaixo:

$$\Delta H_{G.OBST(ALARME)} = SP_{G.OBST(ALARME)} = k_{G.OBST(ALARME)} \cdot Q_n^2 \qquad (4)$$

Onde: $SP_{G.OBST(ALARME)} = Variação de carga esperada para obstrução da grade, em mca;$

 $k_{G.OBST(ALARME)} =$ fator de proporcionalidade para obstrução da grade;

 $Q_n = vazão turbinada de água, em m³/s.$

PRESYS INSTRUMENTOS E SISTEMAS LTDA. RUA LUIZ DA COSTA RAMOS, 260 - SAÚDE SÃO PAULO - S.P. - CEP. 04157-020 - FONE: (011) 5583.1900 - FAX: (011) 577.3366

O valor de $k_{G.OBST(ALARME)}$ é igual a 2,66618x10⁻⁶ para obstrução de 30% da grade, porém seu valor pode ser alterado. Para maiores detalhes consulte a seção 2 - Configuração desse documento.

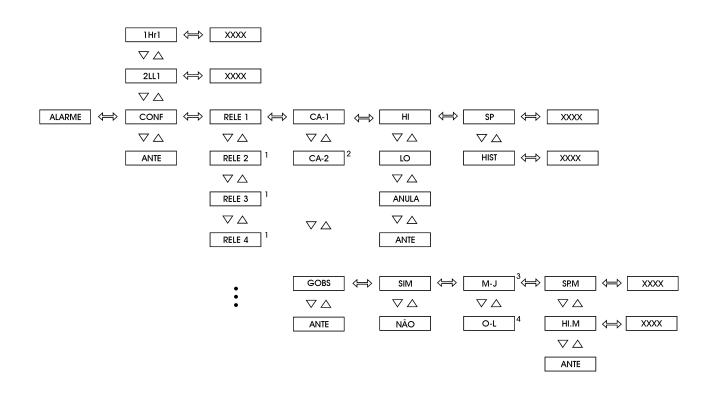
3) Relé 4: G.OBST - Situação de trip.

Este relé indica que a obstrução da grade encontra-se em 60%. As condições para o alarme de **G.OBST** 60% são as seguintes:

i) Se
$$\Delta H_{\text{medido}} >= SP_{\text{GOBST(TRIP)}}$$
 e $\Delta H_{\text{MIN}} >= SP_{\text{MIN(TRIP)}}$, o relé está em condição de alarme;

ii) Se
$$\Delta H_{\text{medido}} < SP_{\text{GOBST(TRIP)}}$$
 ou $\Delta H_{\text{MN}} < SP_{\text{MN(TRIP)}}$, o relé está fora da condição de alarme.

O setpoint de alarme $SP_{G.OBST(MIN)}$ não é configurado manualmente, pois o mesmo depende da vazão turbinada Q_n , enquanto SP_{MIN} e $HIST_{MIN}$ são os mínimos valores de setpoint e histerese, respectivamente, configurados através dos parâmetros SP.M e HI.M no nível ALARMES para o relé 4 com a opção G.OBST. O termo ΔH_{MIN} pode assumir dois valores distintos, dependo da configuração: caso a configuração esteja em M-J (**M**ontante - **J**usante), $\Delta H_{MIN} = \Delta H_{medido}$. Por outro lado, caso a configuração esteja em O-L (Perda **O**bstrução - **L**impa), $\Delta H_{MIN} = \Delta H_{G.OBST60\%}$ - ΔH_{normal} . Para o cálculo de ΔH é utilizada a equação (1), onde $SP_{G.OBST(TRIP)}$ nada mais é que um valor de variação de carga, como indicado abaixo:


$$\Delta H_{G.OBST(TRIP)} = SP_{G.OBST(TRIP)} = k_{G.OBST(TRIP)} \cdot Q_n^2$$
 (5)

Onde: $SP_{G.OBST(TRIP)} = Variação de carga esperada para obstrução da grade, em mca;$

 $k_{G,OBST(TRIP)}$ = fator de proporcionalidade para obstrução da grade;

 $Q_n = vazão turbinada de água, em m³/s.$

O valor de $k_{G.OBST(TRIP)}$ é igual a 3,31586x10⁻⁶ para obstrução de 60% da grade, porém seu valor pode ser alterado. Para maiores detalhes consulte a seção 2 - Configuração desse documento.

(1) SEGUEM AS MESMAS OPÇÕES DO RELÉ 1 (2) SEGUEM AS MESMAS OPÇÕES DO CA-1

Figura 3 – Nível ALARMES

2) Configuração

a) Nível GERAL

O nível GERAL possui três novas funções, além das funções normais do manual técnico: INDIC, FATOR e OPER.

A função INDIC permite a configuração de como deve ser feita a troca de indicação no modo de operação das variáveis de processo. No modo de operação, há a possibilidade de ver as indicações da vazão turbinada Q_n (associada ao canal 1) e das variáveis dos canais 2 e 3, via o acionamento da tecla SOBE ou DESCE pelo usuário ou deixar que o próprio instrumento troque alternadamente entre os valores da variável medida de cada canal. Na primeira hipótese NÃO é selecionado para a opção TPO1, TPO2 ou TPO3, e na segunda hipótese SIM (modo de varredura automática) é selecionado para a opção TPO1, TPO2 ou TPO3, juntamente com a atribuição dos tempos de exibição de cada canal em segundos.

A função FATOR possibilita a alteração dos valores de k_{normal} , $k_{GOBST50\%}$ e $k_{GOBST60\%}$. Dentro da opção FATOR, existem dois mnemônicos: LSD e MSD. O mnemônico LSD significa *Least Significant Digits* (dígitos menos sigificativos) e o mnemônico MSD significa *Most Significant Digits* (dígitos mais sigificativos). Como o display do indicador possui apenas quatro dígitos e o valor de k possui mais algarismos significativos que o disponível, quebra-se o número de dígitos significativos do k em dois conjuntos de quatro dígitos. Além disso, é possível configurar o parâmetro EHP (Expoente - faixa de 0 a 20). Deste modo:

PRESYS INSTRUMENTOS E SISTEMAS LTDA. RUA LUIZ DA COSTA RAMOS, 260 - SAÚDE SÃO PAULO - S.P. - CEP. 04157-020 - FONE: (011) 5583.1900 - FAX: (011) 577.3366

⁽²⁾ SEGUEM AS MESMAS OPÇÕES DO CA-(3) SÓ APARECE PARA OS RELÉS 3 E 4 (4) SEGUEM AS MESMAS OPÇÕES DO M-J

$$k = (MSDx10000 + LSD)x10^{-EHP}$$
 (6)

Utilizando, como exemplo, o valor de $k_{normal} = 2,21420x10^{-6}$, tem-se que MSD = 22, e LSD = 1420 e EHP = 11. Portanto, de (6):

$$k_{normal} = (22x10000 + 1420)x10^{-11} = 2,21420.10^{-6}$$

A faixa de valores permitida para configuração LSD e MSD está compreendida entre 0 e 9999.

Em SENS, é possível configurar qual o sensor conectado à entrada 1: pressão diferencial (DP) ou vazão turbinada Q_n (VAZ). Ao selecionar a opção DP, deve-se configurar os parâmetros CONV e CORR, para o cálculo da vazão turbinada Q_n (veja a equação 2), e PT.DC que define o número de casas decimais para a indicação de Q_n (CA-1) em nível de operação. A configuração de CONV e CORR segue a mesma metodologia da função FATOR.

A opção OPER permite configurar diferentes tipos de apresentação para o modo de operação. Ao se selecionar OPER, são mostrados os mnemônicos CARG, H.MED e VAZ.C. Em CARG habilita-se, pela seleção de SIM, a exibição dos valores de ΔH_{normal} (NORMAL), ΔH_{G.OBST(ALARME)} (ALARME) e ΔH_{G.OBST(TRIP)} (TRIP) em modo de operação. H.MED habilita a apresentação de ΔH_{medida} (H.MED), selecionando-se SIM, ou ΔH_{grade} (P.CAR), ao se selecionar NAO. Na opção VAZ.C seleciona-se o tipo de vazão indicada em modo de operação: vazão corrigida (seleção de SIM), ou seja, que faz uso do parâmetro CORR da opção DP, ou não corrigida (seleção de NAO).

d) Nível ENTRADAS

No nível ENTRADAS, deve-se atentar para a configuração dos parâmetros ENG HIGH e ENG LOW do canal 1 (CA-1). Caso o sensor de entrada (nível GERAL, opção SENS) estiver configurada para medir pressão diferencial (DP) os parâmetros ENG LOW e ENG HIGH devem ser configurados com os valores da raiz quadrada dos pontos mínimo e máximo da faixa do sensor de entrada. Por exemplo: o sensor de pressão diferencial possui faixa de 0 a 360 mbar, os valores de ENG LOW e ENG HIGH devem ser, respectivamente, 0 ($\sqrt{0}$) a 18.97 ($\sqrt{360}$). Para o caso de o sensor de entrada ser de vazão (VAZ), os valores de ENG LOW e ENG HIGH devem ser inseridos diretamente como os pontos mínimo e máximo da faixa do sensor e, no nível GERAL, a opção VAZ.C deve ser configurada como SIM. Além disso, para os dois modos, a extração da raiz quadrada para o canal 1 (SQRT) deve ser ativada.

c) Nível ALARMES

No nível ALARMES, é possível associar cada relé com o CA-1, CA-2 ou GOBST. As opcões CA-1 e CA-2 são idênticas às funcões do manual técnico. Selecionando a funcão GOBST. a configuração para o relé é feita de maneira automática. Como visto na seção 1- Funcionamento, cada relé possui uma função específica. Para que os mesmos funcionem a contento, deve-se entrar em cada relé individualmente e selecionar a função GOBST e confirmar a opção SIM.

ATENCÃO: a associação do relé 2 para alarme GOBST configura automaticamente o relé para alarme de baixa (LO). Não altere esta configuração pois o instrumento não vai funcionar corretamente.

Os valores de setpoint dos relés 3 e 4 são dinâmicos e dependem do valor da vazão turbinada (CA-1). Para os valores de histerese de alarme é atribuído zero às mesmas.

A seleção do alarme de GOBST para o relé 1 apenas garante que o mesmo seja anulado.

c) Nível SAIDAS

No nível SAIDAS é possível associar as saída de retransmissão com CA-1, CA-2, CA-3 ΔH_{medido} (mnemônico H.med) ou Perda na Grade. O valor da Perda na Grade é dado pela equação (2), em mca.

3) Operação

O nível de operação permite a exibição de três telas diferentes, denominadas Tela 1, Tela 2 e Tela 3. A Tela 1 indica no display superior a Perda na Carga e no display inferior a indicação da vazão turbinada (V_VAZ.), nível da montante (V_MON.) e nível da jusante (V_JUS.). A Tela 2 indica no display superior o valor dos ΔH das condições normal (V_NORMAL), alarme (V_ALARME) e trip (V_TRIP) e no display inferior os mnemônicos NORMAL, ALARME e TRIP. A exibição da tela 2 está condicionada à configuração da opção OPER no nível GERAL (para mais detalhes consultar a seção 2- Configuração). A Tela 3 indica no display superior o mnemônico CONF e o display inferior se mantém apagado . Para entrar no modo de configuração, pressionar a tecla SOBE na Tela 3. Para maiores detalhes consulte a figura 1 mostrada abaixo.

Figura 2 – Modo de Operação

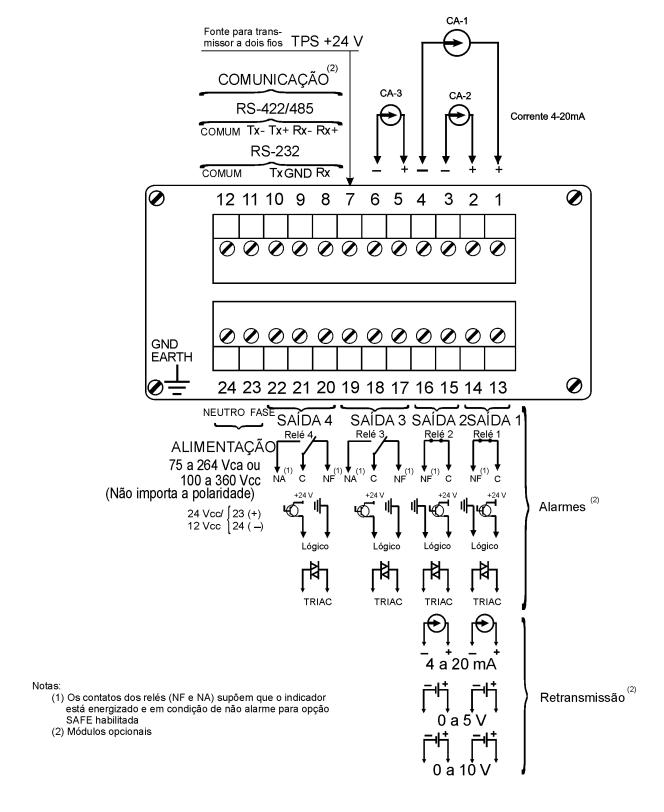


Figura 3 – Diagrama de Conexões